Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler.
Ontology highlight
ABSTRACT: Posttranslational modifications play a key role in recruiting chromatin remodeling and modifying enzymes to specific regions of chromosomes to modulate chromatin structure. Alc1 (amplified in liver cancer 1), a member of the SNF2 ATPase superfamily with a carboxy-terminal macrodomain, is encoded by an oncogene implicated in the pathogenesis of hepatocellular carcinoma. Here we show that Alc1 interacts transiently with chromatin-associated proteins, including histones and the poly(ADP-ribose) polymerase Parp1. Alc1 ATPase and chromatin remodeling activities are strongly activated by Parp1 and its substrate NAD and require an intact macrodomain capable of binding poly(ADP-ribose). Alc1 is rapidly recruited to nucleosomes in vitro and to chromatin in cells when Parp1 catalyzes PAR synthesis. We propose that poly(ADP-ribosyl)ation of chromatin-associated Parp1 serves as a mechanism for targeting a SNF2 family remodeler to chromatin.
SUBMITTER: Gottschalk AJ
PROVIDER: S-EPMC2722505 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA