Empirical relationship between intra-purine and intra-pyrimidine differences in conserved gene sequences.
Ontology highlight
ABSTRACT: DNA sequences seen in the normal character-based representation appear to have a formidable mixing of the four nucleotides without any apparent order. Nucleotide frequencies and distributions in the sequences have been studied extensively, since the simple rule given by Chargaff almost a century ago that equates the total number of purines to the pyrimidines in a duplex DNA sequence. While it is difficult to trace any relationship between the bases from studies in the character representation of a DNA sequence, graphical representations may provide a clue. These novel representations of DNA sequences have been useful in providing an overview of base distribution and composition of the sequences and providing insights into many hidden structures. We report here our observation based on a graphical representation that the intra-purine and intra-pyrimidine differences in sequences of conserved genes generally follow a quadratic distribution relationship and show that this may have arisen from mutations in the sequences over evolutionary time scales. From this hitherto undescribed relationship for the gene sequences considered in this report we hypothesize that such relationships may be characteristic of these sequences and therefore could become a barrier to large scale sequence alterations that override such characteristics, perhaps through some monitoring process inbuilt in the DNA sequences. Such relationship also raises the possibility of intron sequences playing an important role in maintaining the characteristics and could be indicative of possible intron-late phenomena.
SUBMITTER: Nandy A
PROVIDER: S-EPMC2730015 | biostudies-literature | 2009 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA