Project description:Arcanobacterium pyogenes, a common inhabitant of the mucosal surfaces of livestock, is also a pathogen associated with a variety of infections. In livestock, A. pyogenes is exposed to antimicrobial agents used for prophylaxis and therapy, notably tylosin, a macrolide used extensively for the prevention of liver abscessation in feedlot cattle in the United States. Many, but not all, tylosin-resistant A. pyogenes isolates carry erm(X), suggesting the presence of other determinants of tylosin resistance. Oligonucleotide primers designed for conserved regions of erm(B), erm(C), and erm(T) were used to amplify a 404-bp fragment from a tylosin-resistant A. pyogenes isolate, OX-7. DNA sequencing revealed that the PCR product was 100% identical to erm(B) genes, and the erm(B) gene region was cloned in Escherichia coli. The A. pyogenes Erm B determinant had the most DNA identity with an Erm B determinant carried by the Clostridium perfringens plasmid pIP402. However, the A. pyogenes determinant lacked direct repeat DR1 and contained a deletion in DR2. Flanking the A. pyogenes erm(B) gene were partial and entire genes similar to those found on the Enterococcus faecalis multiresistance plasmid pRE25. This novel architecture suggests that the erm(B) element may have arisen by recombination of two distinct genetic elements. Ten of 32 tylosin-resistant isolates carried erm(B), as determined by DNA hybridization, and all 10 isolates carried a similar element. Insertion of the element was site specific, as PCR and Southern blotting analysis revealed that the erm(B) element was inserted into orfY, a gene of unknown function. However, in three strains, this insertion resulted in a partial duplication of orfY.
Project description:Arcanobacterium pyogenes is an opportunistic pathogen, associated with suppurative infections in domestic animals. In addition to pyolysin, a pore-forming, cholesterol-binding toxin, A. pyogenes expresses a number of putative virulence factors, including several proteases and neuraminidase activity. A 3,009-bp gene, nanH, was cloned and sequenced and conferred neuraminidase activity on an Escherichia coli host strain. The predicted 107-kDa NanH protein displayed similarity to a number of bacterial neuraminidases and contained the RIP/RLP motif and five copies of the Asp box motif found in all bacterial neuraminidases. Recombinant His-tagged NanH was found to have pH and temperature optima of 5.5 to 6.0 and 55 degrees C, respectively. Insertional deletion of the nanH gene resulted in the reduction, but not absence, of neuraminidase activity, indicating the presence of a second neuraminidase gene in A. pyogenes. NanH was localized to the A. pyogenes cell wall. A. pyogenes adhered to HeLa, CHO, and MDBK cells in a washing-resistant manner. However, the nanH mutant was not defective for adherence to epithelial cells. The role of NanH in host epithelial cell adherence may be masked by the presence of a second neuraminidase in A. pyogenes.
Project description:Arcanobacterium pyogenes is an opportunistic pathogen associated with suppurative diseases in economically important food animals such as cattle, pigs, and turkeys. A. pyogenes adheres to host epithelial cells, and adhesion is promoted by the action of neuraminidase, which is expressed by this organism. However, a neuraminidase-deficient mutant of A. pyogenes only had a reduced ability to adhere to host epithelial cells, indicating that other factors are involved in adhesion. Far Western blotting revealed the presence of an approximately 120-kDa A. pyogenes cell wall protein that binds collagen type I. The 3.5-kb gene that encodes the 124.7-kDa CbpA protein was cloned, and sequence analysis indicated that CbpA contains a typical MSCRAMM protein domain structure. Recombinant, six-His-tagged CbpA (HIS-CbpA) was capable of binding collagen types I, II, and IV but not fibronectin. In addition, CbpA was involved in the ability of A. pyogenes to adhere to HeLa and 3T6 cells, as a cbpA knockout strain had 38.2 and 57.0% of wild-type adhesion, respectively. This defect could be complemented by providing cbpA on a multicopy plasmid. Furthermore, HIS-CbpA blocked A. pyogenes adhesion to HeLa or 3T6 cells in a dose-dependent manner. cbpA was only present in 48% of the A. pyogenes strains tested (n = 75), and introduction of plasmid-encoded cbpA into a naturally cbpA-deficient strain increased the ability of this strain to bind to HeLa and 3T6 cells 2.9- and 5.7-fold, respectively. These data indicate that CbpA, a collagen-binding protein of A. pyogenes, plays a role in the adhesion of this organism to host cells.
Project description:Arcanobacterium pyogenes, a commensal on the mucous membranes of many economically important animal species, is also a pathogen, causing abscesses of the skin, joints, and visceral organs as well as mastitis and abortion. In food animals, A. pyogenes is exposed to antimicrobial agents used for growth promotion, prophylaxis, and therapy, notably tylosin, a macrolide antibiotic used extensively for the prevention of liver abscessation in feedlot cattle in the United States. Of 48 A. pyogenes isolates, 11 (22.9%) exhibited inducible or constitutive resistance to tylosin (MIC of > or = 128 microg/ml). These isolates also exhibited resistance to other macrolide and lincosamide antibiotics, suggesting a macrolide-lincosamide resistance phenotype. Of the 11 resistant isolates, genomic DNA from nine hybridized to an erm(X)-specific probe. Cloning and nucleotide sequencing of the A. pyogenes erm(X) gene indicated that it was >95% similar to erm(X) genes from Corynebacterium and Propionibacterium spp. Eight of the erm(X)-containing A. pyogenes isolates exhibited inducible tylosin resistance, which was consistent with the presence of a putative leader peptide upstream of the erm(X) open reading frame. For at least one A. pyogenes isolate, 98-4277-2, erm(X) was present on a plasmid, pAP2, and was associated with the insertion sequence IS6100. pAP2 also carried genes encoding the repressor-regulated tetracycline efflux system determinant Tet 33. The repA gene from pAP2 was nonfunctional in Escherichia coli and at least one A. pyogenes isolate, suggesting that there may be host-encoded factors required for replication of this plasmid.
Project description:Four macrolide-resistant Arcanobacterium pyogenes isolates contained A2058T, A2058G, or C2611G (Escherichia coli numbering) mutations in their 23S rRNA genes. While these mutations conferred resistance to erythromycin, oleandomycin, and spiramycin, they did not confer resistance to tylosin.
Project description:Arcanobacterium pyogenes, a common inhabitant of the upper respiratory and urogenital tracts of economically important animals, such as cattle and swine, is also an opportunistic pathogen associated with suppurative infections in these animals. A. pyogenes expresses neuraminidase activity encoded by the nanH gene, and previously, construction of a nanH mutant of A. pyogenes BBR1 indicated that a second neuraminidase is present in this strain. A 5,112-bp gene, nanP, was cloned and sequenced, and this gene conferred neuraminidase activity on an Escherichia coli host strain. The predicted 186.8-kDa NanP protein exhibited similarity to a number of bacterial neuraminidases and contained the RIP/RLP motif and five copies of the Asp box motif found in all bacterial neuraminidases. As expected, insertional inactivation of the nanP gene in A. pyogenes BBR1 resulted in a mutant with reduced neuraminidase activity. However, insertional inactivation of the nanP gene in the nanH mutant strain resulted in a complete lack of neuraminidase activity. Like NanH, NanP was localized to the A. pyogenes cell wall. However, unlike the nanH gene, which was present in 100% of the strains examined, nanP was present in only 64.2% of the isolates (n = 53). A. pyogenes adheres to HeLa cells, and a nanP mutant displayed a wild-type adhesion phenotype with these cells. In contrast, the ability of a nanH nanP double mutant to bind to HeLa cells was reduced by 53%. The wild-type adhesion phenotype was restored by providing nanP in trans. These data indicate that the neuraminidases of A. pyogenes play a role in adhesion of this organism to host epithelial cells.
Project description:The tet(W) gene is associated with tetracycline resistance in a wide range of bacterial species, including obligately anaerobic rumen bacteria and isolates from the human gut and oral mucosa. However, little is known about how this gene is disseminated and the types of genetic elements it is carried on. We examined tetracycline-resistant isolates of the animal commensal and opportunistic pathogen Arcanobacterium pyogenes, all of which carried tet(W), and identified three genetic elements designated ATE-1, ATE-2, and ATE-3. These elements were found in 25%, 35%, and 60% of tetracycline-resistant isolates, respectively, with some strains carrying both ATE-2 and ATE-3. ATE-1 shows characteristics of a mobilizable transposon, and the tet(W) genes from strains carrying this element can be transferred at low frequencies between A. pyogenes strains. ATE-2 has characteristics of a simple transposon, carrying only the resistance gene and a transposase, while in ATE-3, the tet(W) gene is associated with a streptomycin resistance gene that is 100% identical at the DNA level with the aadE gene from the Campylobacter jejuni plasmid pCG8245. Both ATE-2 and ATE-3 show evidence of being carried on larger genetic elements, but conjugation to other strains was not observed under the conditions tested. ATE-1 was preferentially associated with A. pyogenes strains of bovine origin, while ATE-2 and ATE-3 elements were primarily found in porcine isolates, suggesting that these elements may circulate in different environments. In addition, four alleles of the tet(W) gene, primarily associated with different elements, were detected among A. pyogenes isolates.
Project description:Tetracycline resistance is common among isolates of the animal commensal and opportunistic pathogen Arcanobacterium pyogenes. The tetracycline resistance determinant cloned from two bovine isolates of A. pyogenes was highly similar at the DNA level (92% identity) to the tet(W) gene, encoding a ribosomal protection tetracycline resistance protein, from the rumen bacterium Butyrivibrio fibrisolvens. The tet(W) gene was found in all 20 tetracycline-resistant isolates tested, indicating that it is a widely distributed determinant of tetracycline resistance in this organism. In 25% of tetracycline-resistant isolates, the tet(W) gene was associated with a mob gene, encoding a functional mobilization protein, and an origin of transfer, suggesting that the determinant may be transferable to other bacteria. In fact, low-frequency transfer of tet(W) was detected from mob+ A. pyogenes isolates to a tetracycline-sensitive A. pyogenes recipient. The mobile nature of this determinant and the presence of A. pyogenes in the gastrointestinal tract of cattle and pigs suggest that A. pyogenes may have inherited this determinant within the gastrointestinal tracts of these animals.
Project description:Arcanobacterium (Actinomyces) pyogenes, an animal pathogen, produces a hemolytic exotoxin, pyolysin (PLO). The gene encoding PLO was cloned, and sequence analysis revealed an open reading frame of 1,605 bp encoding a protein of 57.9 kDa. PLO has 30 to 40% identity with the thiol-activated cytolysins (TACYs) of a number of gram-positive bacteria. The activity of PLO was found to be very similar to those of other TACYs, except that it was not thiol activated. The highly conserved TACY undecapeptide is divergent in PLO; in particular, the cysteine residue required for thiol activation has been replaced with alanine. However, mutagenesis of the alanine residue to cysteine did not confer thiol activation on PLO, suggesting a conformational difference in the undecapeptide region of this toxin. Specific antibodies against purified, recombinant PLO completely neutralized the hemolytic activity of A. pyogenes, suggesting that this organism produces a single hemolysin. Furthermore, these antibodies could passively protect mice against lethal challenge with A. pyogenes, suggesting that like other TACYs PLO is an important virulence factor in the pathogenesis of this organism.
Project description:The 2.4-kb plasmid pAP1 from Arcanobacterium (Actinomyces) pyogenes had sequence similarity within the putative replication protein and double-stranded origin with the pIJ101/pJV1 family of plasmids. pJGS84, a derivative of pAP1 containing a kanamycin resistance gene, was able to replicate in Escherichia coli and Corynebacterium pseudotuberculosis, as well as in A. pyogenes. Detection of single-stranded DNA intermediates of pJGS84 replication suggested that this plasmid replicates by the rolling circle mechanism.