Unknown

Dataset Information

0

Structural similarity assessment for drug sensitivity prediction in cancer.


ABSTRACT: BACKGROUND: The ability to predict drug sensitivity in cancer is one of the exciting promises of pharmacogenomic research. Several groups have demonstrated the ability to predict drug sensitivity by integrating chemo-sensitivity data and associated gene expression measurements from large anti-cancer drug screens such as NCI-60. The general approach is based on comparing gene expression measurements from sensitive and resistant cancer cell lines and deriving drug sensitivity profiles consisting of lists of genes whose expression is predictive of response to a drug. Importantly, it has been shown that such profiles are generic and can be applied to cancer cell lines that are not part of the anti-cancer screen. However, one limitation is that the profiles can not be generated for untested drugs (i.e., drugs that are not part of an anti-cancer drug screen). In this work, we propose using an existing drug sensitivity profile for drug A as a substitute for an untested drug B given high structural similarities between drugs A and B. RESULTS: We first show that structural similarity between pairs of compounds in the NCI-60 dataset highly correlates with the similarity between their activities across the cancer cell lines. This result shows that structurally similar drugs can be expected to have a similar effect on cancer cell lines. We next set out to test our hypothesis that we can use existing drug sensitivity profiles as substitute profiles for untested drugs. In a cross-validation experiment, we found that the use of substitute profiles is possible without a significant loss of prediction accuracy if the substitute profile was generated from a compound with high structural similarity to the untested compound. CONCLUSION: Anti-cancer drug screens are a valuable resource for generating omics-based drug sensitivity profiles. We show that it is possible to extend the usefulness of existing screens to untested drugs by deriving substitute sensitivity profiles from structurally similar drugs part of the screen.

SUBMITTER: Shivakumar P 

PROVIDER: S-EPMC2745688 | biostudies-literature | 2009

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural similarity assessment for drug sensitivity prediction in cancer.

Shivakumar Pavithra P   Krauthammer Michael M  

BMC bioinformatics 20090917


<h4>Background</h4>The ability to predict drug sensitivity in cancer is one of the exciting promises of pharmacogenomic research. Several groups have demonstrated the ability to predict drug sensitivity by integrating chemo-sensitivity data and associated gene expression measurements from large anti-cancer drug screens such as NCI-60. The general approach is based on comparing gene expression measurements from sensitive and resistant cancer cell lines and deriving drug sensitivity profiles consi  ...[more]

Similar Datasets

2005-07-30 | E-GEOD-3034 | biostudies-arrayexpress
2005-07-30 | GSE3034 | GEO
| S-EPMC5629619 | biostudies-literature
| S-EPMC4994023 | biostudies-literature
| S-EPMC7862690 | biostudies-literature
| S-EPMC6309077 | biostudies-literature
| S-EPMC6828742 | biostudies-literature
2021-04-20 | PXD017199 | Pride
| S-EPMC4422192 | biostudies-literature
| S-EPMC7771088 | biostudies-literature