Unknown

Dataset Information

0

NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.


ABSTRACT: The role of nitric oxide (NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O2 and NADPH. Mammalian NOS contains a flavin reductase domain (FAD and FMN) and a catalytic heme oxygenase domain (P450-type heme and tetrahydrobiopterin). Bacterial NOSs, while much less studied, were previously identified as only containing the heme oxygenase domain of the more complex mammalian NOSs. We report here on the characterization of a NOS from Sorangium cellulosum (both full-length, scNOS, and oxygenase domain, scNOSox). scNOS contains a catalytic, oxygenase domain similar to those found in the mammalian NOS and in other bacteria. Unlike the other bacterial NOSs reported to date, however, this protein contains a fused reductase domain. The scNOS reductase domain is unique for the entire NOS family because it utilizes a 2Fe2S cluster for electron transfer. scNOS catalytically produces NO and citrulline in the presence of either tetrahydrobiopterin or tetrahydrofolate. These results establish a bacterial electron transfer pathway used for biological NO synthesis as well as a unique flexibility in using different tetrahydropterin cofactors for this reaction.

SUBMITTER: Agapie T 

PROVIDER: S-EPMC2752531 | biostudies-literature | 2009 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum.

Agapie Theodor T   Suseno Sandy S   Woodward Joshua J JJ   Stoll Stefan S   Britt R David RD   Marletta Michael A MA  

Proceedings of the National Academy of Sciences of the United States of America 20090910 38


The role of nitric oxide (NO) in the host response to infection and in cellular signaling is well established. Enzymatic synthesis of NO is catalyzed by the nitric oxide synthases (NOSs), which convert Arg into NO and citrulline using co-substrates O2 and NADPH. Mammalian NOS contains a flavin reductase domain (FAD and FMN) and a catalytic heme oxygenase domain (P450-type heme and tetrahydrobiopterin). Bacterial NOSs, while much less studied, were previously identified as only containing the hem  ...[more]

Similar Datasets

| S-EPMC3388219 | biostudies-other
| PRJNA36817 | ENA
2021-01-18 | GSE164521 | GEO
| S-EPMC5930340 | biostudies-literature
| S-EPMC5283056 | biostudies-literature
| S-EPMC4860011 | biostudies-literature
| S-EPMC555713 | biostudies-literature
| S-EPMC3696898 | biostudies-literature
2023-06-01 | PXD040726 | Pride
| S-EPMC3831449 | biostudies-literature