Unknown

Dataset Information

0

Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes.


ABSTRACT: Liposome-based chemical exchange saturation transfer (lipoCEST) agents have shown great sensitivity and potential for molecular magnetic resonance imaging (MRI). Here we demonstrate that the size of liposomes can be exploited to enhance the lipoCEST contrast. A concise analytical model is developed to describe the contrast dependence on size for an ensemble of liposomes. The model attributes the increased lipoCEST contrast in smaller liposomes to their larger surface-to-volume ratio, causing an increased membrane water exchange rate. Experimentally measured rates correlate with size, in agreement with the model. The water permeability of liposomal membrane is found to be 1.11 +/- 0.14 microm/s for the specific lipid composition at 22 degrees C. Availability of the model allows rational design of the size of liposomes and quantification of their properties. These new theoretical and experimental tools are expected to benefit applications of liposomes to sensing the cellular environment, targeting and imaging biological processes, and optimizing drug delivery properties.

SUBMITTER: Zhao JM 

PROVIDER: S-EPMC2759111 | biostudies-literature | 2008 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Size-induced enhancement of chemical exchange saturation transfer (CEST) contrast in liposomes.

Zhao Jason M JM   Har-el Yah-el YE   McMahon Michael T MT   Zhou Jinyuan J   Sherry A Dean AD   Sgouros George G   Bulte Jeff W M JW   van Zijl Peter C M PC  

Journal of the American Chemical Society 20080325 15


Liposome-based chemical exchange saturation transfer (lipoCEST) agents have shown great sensitivity and potential for molecular magnetic resonance imaging (MRI). Here we demonstrate that the size of liposomes can be exploited to enhance the lipoCEST contrast. A concise analytical model is developed to describe the contrast dependence on size for an ensemble of liposomes. The model attributes the increased lipoCEST contrast in smaller liposomes to their larger surface-to-volume ratio, causing an  ...[more]

Similar Datasets

| S-EPMC5490367 | biostudies-literature
| S-EPMC4715718 | biostudies-literature
| S-EPMC3972041 | biostudies-other
| S-EPMC5107181 | biostudies-literature
| S-EPMC4548835 | biostudies-literature
| S-EPMC5213670 | biostudies-literature
| S-EPMC4466164 | biostudies-literature
| S-EPMC6234098 | biostudies-literature
| S-EPMC2898906 | biostudies-literature
| S-EPMC5723528 | biostudies-literature