Unknown

Dataset Information

0

Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa.


ABSTRACT: 'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip(R) microarrays to profile the response of the banana (Musa spp.) leaf transcriptome to drought stress using a genomic DNA (gDNA)-based probe-selection strategy to improve the efficiency of detection of differentially expressed Musa transcripts.Following cross-hybridisation of Musa gDNA to the Rice GeneChip(R) Genome Array, ~33,700 gene-specific probe-sets had a sufficiently high degree of homology to be retained for transcriptomic analyses. In a proof-of-concept approach, pooled RNA representing a single biological replicate of control and drought stressed leaves of the Musa cultivar 'Cachaco' were hybridised to the Affymetrix Rice Genome Array. A total of 2,910 Musa gene homologues with a >2-fold difference in expression levels were subsequently identified. These drought-responsive transcripts included many functional classes associated with plant biotic and abiotic stress responses, as well as a range of regulatory genes known to be involved in coordinating abiotic stress responses. This latter group included members of the ERF, DREB, MYB, bZIP and bHLH transcription factor families. Fifty-two of these drought-sensitive Musa transcripts were homologous to genes underlying QTLs for drought and cold tolerance in rice, including in 2 instances QTLs associated with a single underlying gene. The list of drought-responsive transcripts also included genes identified in publicly-available comparative transcriptomics experiments.Our results demonstrate that despite the general paucity of nucleotide sequence data in Musa and only distant phylogenetic relations to rice, gDNA probe-based cross-hybridisation to the Rice GeneChip(R) is a highly promising strategy to study complex biological responses and illustrates the potential of such strategies for gene discovery in non-model species.

SUBMITTER: Davey MW 

PROVIDER: S-EPMC2761422 | biostudies-literature | 2009 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa.

Davey Mark W MW   Graham Neil S NS   Vanholme Bartel B   Swennen Rony R   May Sean T ST   Keulemans Johan J  

BMC genomics 20090916


<h4>Background</h4>'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip(R) microarrays to profile the response of the b  ...[more]

Similar Datasets

2009-07-04 | GSE16865 | GEO
2009-07-04 | E-GEOD-16865 | biostudies-arrayexpress
| S-EPMC2533705 | biostudies-literature
| S-EPMC6778798 | biostudies-literature
| S-EPMC8037683 | biostudies-literature
2024-05-02 | GSE245870 | GEO
| S-EPMC117213 | biostudies-literature
| S-EPMC152821 | biostudies-literature
| S-EPMC3591399 | biostudies-literature
| S-EPMC4767280 | biostudies-literature