Novel cationic lipid that delivers siRNA and enhances therapeutic effect in lung cancer cells.
Ontology highlight
ABSTRACT: We have developed lipid-polycation-DNA (LPD) nanoparticles containing DOTAP and targeted with polyethylene glycol (PEG) tethered with anisamide (AA) to specifically deliver siRNA to H460 human lung carcinoma cells which express the sigma receptor. A novel non-glycerol based cationic lipid which contains both a guanidinium and a lysine residue as the cationic headgroup, i.e. DSGLA, downregulated pERK more efficiently in H460 cells than DOTAP. As demonstrated by using fluorescently labeled siRNA, LPD-PEG-AA prepared with DSGLA efficiently delivered siRNA to the cytoplasm of the H460 cells. Although the siRNA delivered by LPD-PEG-AA containing either DOTAP or DSGLA could effectively silence EGFR expression, a synergistic cell killing effect in promoting cellular apoptosis was only observed with DSGLA. The fluorescently labeled siRNA was efficiently delivered into the cytoplasm of H460 xenograft tumor by the LPD-PEG-AA containing either DOTAP or DSGLA 4 h after intravenous injection. Three daily injections (0.6 mg/kg) of siRNA formulated in the LPD-PEG-AA containing either DOTAP or DSGLA could effectively silence the epidermal growth factor receptor (EGFR) in the tumor, but the formulation containing DSGLA could induce more cellular apoptosis. A significant improvement in tumor growth inhibition was observed after dosing with LPD-PEG-AA containing DSGLA. Thus, DSGLA served as both a formulation component as well as a therapeutic agent which synergistically enhanced the activity of siRNA.
SUBMITTER: Chen Y
PROVIDER: S-EPMC2763490 | biostudies-literature | 2009 May-Jun
REPOSITORIES: biostudies-literature
ACCESS DATA