ABSTRACT: 9-fluorenylmethoxycarbonyl (Fmoc) and 4,4'-dimethoxytrityl (DMTr) are orthogonal hydroxyl protecting groups that have been used in conjunction to assemble oligonucleotide libraries whose variants contain wild-type and mutant codons randomly interspersed throughout a focused DNA region. Fmoc is labile to organic bases and stable to weak acids, whereas DMTr behaves oppositely. Based on these chemical characteristics, we have now devised TrimerDimer, a novel codon-based saturation mutagenesis approach that removes redundant and stop codons during the assembly of degenerate oligonucleotides. In this approach, five DMTr-protected trinucleotide phosphoramidites (dTGG, dATG, dTTT, dTAT and dTGC) and five Fmoc-protected dinucleotide phosphoramidites (dAA, dTT, dAT, dGC and dCG) react simultaneously with a starting oligonucleotide growing on a solid support. The Fmoc group is then removed and the incorporated dimers react with a mixture of three DMTr-protected monomer phosphoramidites (dC, dA and dG) to produce 15 trinucleotides: dCAA, dAAA, dGAA, dCTT, dATT, dGTT, dCAT, dAAT, dGAT, dCGC, dAGC, dGGC, dCCG, dACG and dGCG. After one mutagenic cycle, 20 codons are generated encoding the 20 natural amino acids. TrimerDimer was tested by randomizing the four contiguous codons that encode amino acids L64-G67 of an engineered, nonfluorescent GFP protein. Sequencing of 89 nonfluorescent mutant clones and isolation of two fluorescent mutants confirmed the principle.