Unknown

Dataset Information

0

Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1.


ABSTRACT: Small RNAs of approximately 20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structures of the MTase domain of a bacterial homolog of Hen1 from Clostridium thermocellum and Anabaena variabilis, which are enzymatically indistinguishable from the eukaryotic Hen1 in their ability to methylate small single-stranded RNAs. The structures reveal that, in addition to the core fold of the MTase domain shared by other RNA and DNA MTases, the MTase domain of Hen1 possesses a motif and a domain that are highly conserved and are unique to Hen1. The unique motif and domain are likely to be involved in RNA substrate recognition and catalysis. The structures allowed us to construct a docking model of an RNA substrate bound to the MTase domain of bacterial Hen1, which is likely similar to that of the eukaryotic counterpart. The model, supported by mutational studies, provides insight into RNA substrate specificity and catalytic mechanism of Hen1.

SUBMITTER: Mui Chan C 

PROVIDER: S-EPMC2764946 | biostudies-literature | 2009 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Structural and biochemical insights into 2'-O-methylation at the 3'-terminal nucleotide of RNA by Hen1.

Mui Chan Chio C   Zhou Chun C   Brunzelle Joseph S JS   Huang Raven H RH  

Proceedings of the National Academy of Sciences of the United States of America 20091012 42


Small RNAs of approximately 20-30 nt have diverse and important biological roles in eukaryotic organisms. After being generated by Dicer or Piwi proteins, all small RNAs in plants and a subset of small RNAs in animals are further modified at their 3'-terminal nucleotides via 2'-O-methylation, carried out by the S-adenosylmethionine-dependent methyltransferase (MTase) Hen1. Methylation at the 3' terminus is vital for biological functions of these small RNAs. Here, we report four crystal structure  ...[more]

Similar Datasets

2018-06-05 | GSE97595 | GEO
| S-EPMC5125239 | biostudies-literature
| S-EPMC3855621 | biostudies-literature
| S-EPMC3192843 | biostudies-literature
| S-EPMC6123492 | biostudies-literature
| S-EPMC167210 | biostudies-literature
| S-EPMC6884420 | biostudies-literature
| S-EPMC3039143 | biostudies-literature
| S-EPMC8524198 | biostudies-literature
| S-EPMC4757822 | biostudies-literature