Unknown

Dataset Information

0

Transcription factors mediate long-range enhancer-promoter interactions.


ABSTRACT: We examined how remote enhancers establish physical communication with target promoters to activate gene transcription in response to environmental signals. Although the natural IFN-beta enhancer is located immediately upstream of the core promoter, it also can function as a classical enhancer element conferring virus infection-dependent activation of heterologous promoters, even when it is placed several kilobases away from these promoters. We demonstrated that the remote IFN-beta enhancer "loops out" the intervening DNA to reach the target promoter. These chromatin loops depend on sequence-specific transcription factors bound to the enhancer and the promoter and thus can explain the specificity observed in enhancer-promoter interactions, especially in complex genetic loci. Transcription factor binding sites scattered between an enhancer and a promoter can work as decoys trapping the enhancer in nonproductive loops, thus resembling insulator elements. Finally, replacement of the transcription factor binding sites involved in DNA looping with those of a heterologous prokaryotic protein, the lambda repressor, which is capable of loop formation, rescues enhancer function from a distance by re-establishing enhancer-promoter loop formation.

SUBMITTER: Nolis IK 

PROVIDER: S-EPMC2779200 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8501976 | biostudies-literature
| S-EPMC6842642 | biostudies-literature
2019-10-07 | GSE138530 | GEO
| S-EPMC9021019 | biostudies-literature
| S-EPMC3954713 | biostudies-literature
| S-EPMC9322198 | biostudies-literature
| S-EPMC6402586 | biostudies-literature
| S-EPMC10390292 | biostudies-literature
2019-10-08 | GSE138528 | GEO
2019-10-08 | GSE138529 | GEO