Unknown

Dataset Information

0

Temporal profiling of changes in phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate and diacylglycerol allows comprehensive analysis of phospholipase C-initiated signalling in single neurons.


ABSTRACT: Phosphatidylinositol 4,5-bisphosphate (PIP(2)) fulfils vital signalling roles in an array of cellular processes, yet until recently it has not been possible selectively to visualize real-time changes in PIP(2) levels within living cells. Green fluorescent protein (GFP)-labelled Tubby protein (GFP-Tubby) enriches to the plasma membrane at rest and translocates to the cytosol following activation of endogenous Galpha(q/11)-coupled muscarinic acetylcholine receptors in both SH-SY5Y human neuroblastoma cells and primary rat hippocampal neurons. GFP-Tubby translocation is independent of changes in cytosolic inositol 1,4,5-trisphosphate and instead reports dynamic changes in levels of plasma membrane PIP(2). In contrast, enhanced GFP (eGFP)-tagged pleckstrin homology domain of phospholipase C (PLCdelta1) (eGFP-PH) translocation reports increases in cytosolic inositol 1,4,5-trisphosphate. Comparison of GFP-Tubby, eGFP-PH and the eGFP-tagged C1(2) domain of protein kinase C-gamma [eGFP-C1(2); to detect diacylglycerol] allowed a selective and comprehensive analysis of PLC-initiated signalling in living cells. Manipulating intracellular Ca(2+) concentrations in the nanomolar range established that GFP-Tubby responses to a muscarinic agonist were sensitive to intracellular Ca(2+) up to 100-200 nM in SH-SY5Y cells, demonstrating the exquisite sensitivity of agonist-mediated PLC activity within the range of physiological resting Ca(2+) concentrations. We have also exploited GFP-Tubby selectively to visualize, for the first time, real-time changes in PIP(2) in hippocampal neurons.

SUBMITTER: Nelson CP 

PROVIDER: S-EPMC2779467 | biostudies-literature | 2008 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Temporal profiling of changes in phosphatidylinositol 4,5-bisphosphate, inositol 1,4,5-trisphosphate and diacylglycerol allows comprehensive analysis of phospholipase C-initiated signalling in single neurons.

Nelson Carl P CP   Nahorski Stefan R SR   Challiss R A John RA  

Journal of neurochemistry 20080811 3


Phosphatidylinositol 4,5-bisphosphate (PIP(2)) fulfils vital signalling roles in an array of cellular processes, yet until recently it has not been possible selectively to visualize real-time changes in PIP(2) levels within living cells. Green fluorescent protein (GFP)-labelled Tubby protein (GFP-Tubby) enriches to the plasma membrane at rest and translocates to the cytosol following activation of endogenous Galpha(q/11)-coupled muscarinic acetylcholine receptors in both SH-SY5Y human neuroblast  ...[more]

Similar Datasets

| S-EPMC1413866 | biostudies-literature
| S-EPMC2998688 | biostudies-literature
| S-EPMC30134 | biostudies-literature
| S-EPMC2531207 | biostudies-literature
| S-EPMC3283994 | biostudies-literature
| S-EPMC1896291 | biostudies-literature
| S-EPMC1147163 | biostudies-other
| S-EPMC6128530 | biostudies-literature
| S-EPMC3037600 | biostudies-literature
| S-EPMC2386513 | biostudies-literature