The sterol carrier protein 2/3-oxoacyl-CoA thiolase (SCPx) is involved in cholesterol uptake in the midgut of Spodoptera litura: gene cloning, expression, localization and functional analyses.
Ontology highlight
ABSTRACT: BACKGROUND: Sterol carrier protein-2/3-oxoacyl-CoA thiolase (SCPx) gene has been suggested to be involved in absorption and transport of cholesterol. Cholesterol is a membrane component and is a precursor of ecdysteroids, but cannot be synthesized de novo in insects. However, a direct association between SCPx gene expression, cholesterol absorption and development in lepidopteran insects remains to be experimentally demonstrated. RESULTS: An SCPx cDNA (SlSCPx) cloned from the common cutworm, Spodoptera litura, was characterized. The SlSCPx cDNA encoded a 535-amino acid protein consisting of a 3-oxoacyl-CoA thiolase (SCPx-t) domain and a SCP-2 (SCPx-2) domain. SlSCPx mRNA was expressed predominately in the midgut, while SlSCPx-2 mRNA was detected in the midgut, fat body and epidermis and no SlSCPx-t mRNA was detected. A 58-kDa full-length SCPx protein and a 44-kDa SCPx-t protein were detected in the midgut of sixth instar larvae when the anti-SlSCPx-t antibody was used in western blotting analysis; a 16-kDa SCP-2 protein was detected when anti-SlSCPx-2 antibody was used. SlSCPx protein was post-translationally cleaved into two smaller proteins, SCPx-t and SCPx-2. The gene appeared to be expressed into two forms of mRNA transcripts, which were translated into the two proteins, respectively. SlSCPx-t and SlSCPx-2 proteins have distinct and different locations in the midgut of sixth instar larvae. SlSCPx and SlSCPx-t proteins were detected predominately in the cytoplasm, whereas SlSCPx-2 protein was detected in the cytoplasm and nuclei in the Spli-221 cells. Over-expression of SlSCPx and SlSCPx-2 proteins enhanced cholesterol uptake into the Spli-221 cells. Knocking-down SlSCPx transcripts by dsRNA interference resulted in a decrease in cholesterol level in the hemolymph and delayed the larval to pupal transition. CONCLUSION: Spatial and temporal expression pattern of this SlSCPx gene during the larval developmental stages of S. litura showed its specific association with the midgut at the feeding stage. Over-expression of this gene increased cholesterol uptake and interference of its transcript decreased cholesterol uptake and delayed the larval to pupal metamorphosis. All of these results taken together suggest that this midgut-specific SlSCPx gene is important for cholesterol uptake and normal development in S. litura.
SUBMITTER: Guo XR
PROVIDER: S-EPMC2779813 | biostudies-literature | 2009
REPOSITORIES: biostudies-literature
ACCESS DATA