Hydrodynamic gene delivery of baboon trypanosome lytic factor eliminates both animal and human-infective African trypanosomes.
Ontology highlight
ABSTRACT: Several species of African trypanosomes cause fatal disease in livestock, but most cannot infect humans due to innate trypanosome lytic factors (TLFs). Human TLFs are pore forming high-density lipoprotein (HDL) particles that contain apolipoprotein L-I (apoL-I) the trypanolytic component, and haptoglobin-related protein (Hpr), which binds free hemoglobin (Hb) in blood and facilitates the uptake of TLF via a trypanosome haptoglobin-hemoglobin receptor. The human-infective Trypanosoma brucei rhodesiense escapes lysis by TLF by expression of serum resistance-associated (SRA) protein, which binds and neutralizes apoL-I. Unlike humans, baboons are not susceptible to infection by T. b. rhodesiense due to previously unidentified serum factors. Here, we show that baboons have a TLF complex that contains orthologs of Hpr and apoL-I and that full-length baboon apoL-I confers trypanolytic activity to mice and when expressed together with baboon Hpr and human apoA-I, provides protection against both animal infective and the human-infective T. brucei rhodesiense in vivo. We further define two critical lysines near the C terminus of baboon apoL-1 that are necessary and sufficient to prevent binding to SRA and thereby confer resistance to human-infective trypanosomes. These findings form the basis for the creation of TLF transgenic livestock that would be resistant to animal and human-infective trypanosomes, which would result in the reduction of disease and the zoonotic transmission of human infective trypanosomes.
SUBMITTER: Thomson R
PROVIDER: S-EPMC2780755 | biostudies-literature | 2009 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA