Unknown

Dataset Information

0

Modular behavior of tauD provides insight into the origin of specificity in alpha-ketoglutarate-dependent nonheme iron oxygenases.


ABSTRACT: Taurine alpha-ketoglutarate dioxygenase (tauD) is one of the best-studied alpha-ketoglutarate (alphaKG)-dependent nonheme iron oxygenases. As with all oxygenases, a fine balance must be struck between generating a species sufficiently reactive for the required chemistry and controlling that species to prevent undesirable side reactions [Klinman JP (2007) Accts Chem Res 40:325-333]. In the case of tauD, the substrate oxidizing species has been shown to be a ferryl-oxo, and the introduction of deuterium at the reactive position of substrate results in an enormous kinetic isotope effect together with a partial uncoupling of oxygen activation from substrate oxidation [Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM (2003) J Am Chem Soc 125:13008-13009]. We have generated a series of site-specific variants at a position that resides directly behind bound substrate (F159 to L, V, A, and G). Decreasing side-chain bulk diminishes the coupling of oxygen activation to C-H cleavage, which is further reduced by substrate deuteration. Despite this impact, oxygen activation remains completely coupled to the oxidative decarboxylation of alphaKG. The concentration of bis-Tris buffer impacts the extent of coupling of oxygen activation to C-H cleavage, implicating the buffer in the uncoupling pathway. These data indicate a critical role for residue 159 in substrate positioning and reaction in tauD and show that minor active-site perturbations in these enzymes could allow for changes in substrate reactivity while maintaining substrate triggering and oxygen binding/activation.

SUBMITTER: McCusker KP 

PROVIDER: S-EPMC2785245 | biostudies-literature | 2009 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Modular behavior of tauD provides insight into the origin of specificity in alpha-ketoglutarate-dependent nonheme iron oxygenases.

McCusker Kevin P KP   Klinman Judith P JP  

Proceedings of the National Academy of Sciences of the United States of America 20091105 47


Taurine alpha-ketoglutarate dioxygenase (tauD) is one of the best-studied alpha-ketoglutarate (alphaKG)-dependent nonheme iron oxygenases. As with all oxygenases, a fine balance must be struck between generating a species sufficiently reactive for the required chemistry and controlling that species to prevent undesirable side reactions [Klinman JP (2007) Accts Chem Res 40:325-333]. In the case of tauD, the substrate oxidizing species has been shown to be a ferryl-oxo, and the introduction of deu  ...[more]

Similar Datasets

| S-EPMC9387357 | biostudies-literature
| S-EPMC179147 | biostudies-other
| S-EPMC2921158 | biostudies-literature
| S-EPMC5352539 | biostudies-literature
| S-EPMC4976521 | biostudies-literature
| S-EPMC3288176 | biostudies-literature
| S-EPMC5453726 | biostudies-literature
| S-EPMC9088281 | biostudies-literature
| S-EPMC9732286 | biostudies-literature
| S-EPMC3931003 | biostudies-literature