Unknown

Dataset Information

0

The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction.


ABSTRACT:

Background

Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.

Methodology/principal findings

In this study we used biochemical, cell biological and molecular assays to investigate a possible role in AChR clustering of cortactin, a protein which is a tyrosine kinase substrate and a regulator of F-actin assembly and which has also been previously localized at AChR clustering sites. We report that cortactin was co-enriched at AChR clusters in situ with its target the Arp2/3 complex, which is a key stimulator of actin polymerization in cells. Cortactin was further preferentially tyrosine phosphorylated at AChR clustering sites and treatment of myotubes with agrin significantly enhanced the tyrosine phosphorylation of cortactin. Importantly, forced expression in myotubes of a tyrosine phosphorylation-defective cortactin mutant (but not wild-type cortactin) suppressed agrin-dependent AChR clustering, as did the reduction of endogenous cortactin levels using RNA interference, and introduction of the mutant cortactin into muscle cells potently inhibited synaptic AChR aggregation in response to innervation.

Conclusion

Our results suggest a novel function of phosphorylation-dependent cortactin signaling downstream from agrin/MuSK in facilitating AChR clustering at the developing NMJ.

SUBMITTER: Madhavan R 

PROVIDER: S-EPMC2793544 | biostudies-literature | 2009 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction.

Madhavan Raghavan R   Gong Zhuolin L ZL   Ma Jin Jin JJ   Chan Ariel W S AW   Peng H Benjamin HB  

PloS one 20091229 12


<h4>Background</h4>Postsynaptic enrichment of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction (NMJ) depends on the activation of the muscle receptor tyrosine MuSK by neural agrin. Agrin-stimulation of MuSK is known to initiate an intracellular signaling cascade that leads to the clustering of AChRs in an actin polymerization-dependent manner, but the molecular steps which link MuSK activation to AChR aggregation remain incompletely defined.<h4>Methodology/principal findi  ...[more]

Similar Datasets

| S-EPMC2808226 | biostudies-literature
| S-EPMC4916433 | biostudies-literature
| S-EPMC6354393 | biostudies-literature
| S-EPMC3257248 | biostudies-literature
| S-EPMC5765005 | biostudies-literature
| S-EPMC3107218 | biostudies-literature
| S-EPMC6133930 | biostudies-literature
| S-EPMC9738074 | biostudies-literature
2005-03-10 | GSE2394 | GEO
| S-EPMC7773664 | biostudies-literature