Project description:BackgroundColorectal cancer (CRC) is a leading cause of cancer death worldwide. Epidemiological risk factors for CRC included alcohol intake, which is mainly metabolized to acetaldehyde by alcohol dehydrogenase and further oxidized to acetate by aldehyde dehydrogenase; consequently, the role of genes in the alcohol metabolism pathways is of particular interest. The aim of this study is to analyze the association between SNPs in ADH1B and ALDH2 genes and CRC risk, and also the main effect of alcohol consumption on CRC risk in the study population.Methodology/principal findingsSNPs from ADH1B and ALDH2 genes, included in alcohol metabolism pathway, were genotyped in 1694 CRC cases and 1851 matched controls from the Molecular Epidemiology of Colorectal Cancer study. Information on clinicopathological characteristics, lifestyle and dietary habits were also obtained. Logistic regression and association analysis were conducted. A positive association between alcohol consumption and CRC risk was observed in male participants from the Molecular Epidemiology of Colorectal Cancer study (MECC) study (OR = 1.47; 95%CI = 1.18-1.81). Moreover, the SNPs rs1229984 in ADH1B gene was found to be associated with CRC risk: under the recessive model, the OR was 1.75 for A/A genotype (95%CI = 1.21-2.52; p-value = 0.0025). A path analysis based on structural equation modeling showed a direct effect of ADH1B gene polymorphisms on colorectal carcinogenesis and also an indirect effect mediated through alcohol consumption.Conclusions/significanceGenetic polymorphisms in the alcohol metabolism pathways have a potential role in colorectal carcinogenesis, probably due to the differences in the ethanol metabolism and acetaldehyde oxidation of these enzyme variants.
Project description:BackgroundMicrobiota has been reported to play a role in cancer patients. Nevertheless, little is known about the association between alcohol consumption and resultant changes in the diversity and composition of oesophageal microbiota in oesophageal squamous cell carcinoma (ESCC).MethodsWe performed a hospital-based retrospective study of 120 patients with pathologically diagnosed primary ESCC. The relevant information for all study participants were collected through a detailed questionnaire. The differences in adjacent tissues between non-drinkers and drinkers were explored using 16S rRNA gene sequencing. Raw sequencing data were imported into QIIME 2 to analyse the diversity and abundance of microbiota. Linear discriminant analysis effect size (LEfSe) and unconditional logistic regression were performed to determine the bacterial taxa that were associated with drinking.ResultsThe Shannon diversity index and Bray-Curtis distance of oesophageal microbiota were significantly different among drinkers(P < 0.05). The alcohol-related bacteria were primarily from the orders Clostridiales, Gemellales and Pasteurellales, family Clostridiaceae, Lanchnospiraceae, Helicobacteraceae, Alcaligenaceae, Bacteroidaceae, Pasteurellaceae and Gemellaceae; genus Clostridium, Helicobacter, Catonella, Bacteroides, Bacillus, Moraxella, and Bulleidia; and species B. moorei and longum (genus Bifidobacterium). In addition, the diversity and abundance of these microbiota were observed to be affected by the age, residential districts of the patients, and sampling seasons. Moreover, the higher the frequency and years of alcohol consumption, the lower was the relative abundance of genus Catonella that was observed.ConclusionAlcohol consumption is associated with alterations in both the diversity and composition the of the oesophageal microbiota in ESCC patients.
Project description:Increased intestinal permeability and hepatic macrophage activation by endotoxins are involved in alcohol-induced liver injury pathogenesis. Long-term alcohol exposure conversely induces endotoxin immune tolerance; however, the precise mechanism and reversibility are unclear. Seventy-two alcohol-dependent patients with alcohol dehydrogenase-1B (ADH1B, rs1229984) and aldehyde dehydrogenase-2 (ALDH2, rs671) gene polymorphisms admitted for alcohol abstinence were enrolled. Blood and fecal samples were collected on admission and 4 weeks after alcohol cessation and were sequentially analyzed. Wild-type and ALDH2*2 transgenic mice were used to examine the effect of acetaldehyde exposure on liver immune responses. The productivity of inflammatory cytokines of peripheral CD14+ monocytes in response to LPS stimulation was significantly suppressed in alcohol dependent patients on admission relative to that in healthy controls, which was partially restored by alcohol abstinence with little impact on the gut microbiota composition. Notably, immune suppression was associated with ALDH2/ADH1B gene polymorphisms, and patients with a combination of ALDH2*1/*2 and ADH1B*2 genotypes, the most acetaldehyde-exposed group, demonstrated a deeply suppressed phenotype, suggesting a direct role of acetaldehyde. In vitro LPS and malondialdehyde-acetaldehyde adducted protein stimulation induced direct cytotoxicity on monocytes derived from healthy controls, and a second LPS stimulation suppressed the inflammatory cytokines production. Consistently, hepatic macrophages of ethanol-administered ALDH2*2 transgenic mice exhibited suppressed inflammatory cytokines production in response to LPS compared to that in wild-type mice, reinforcing the contribution of acetaldehyde to liver macrophage function. These results collectively provide new perspectives on the systemic influence of excessive alcohol consumption based on alcohol-metabolizing enzyme genetic polymorphisms.
Project description:BACKGROUND:Single-nucleotide polymorphisms (SNP) in alcohol metabolism genes are associated with squamous cell carcinoma of the head and neck (SCCHN) and may influence cancer risk in conjunction with alcohol. Genetic variation in the oxidative stress pathway may impact the carcinogenic effect of reactive oxygen species produced by ethanol metabolism. We hypothesized that alcohol interacts with these pathways to affect SCCHN incidence. METHODS:Interview and genotyping data for 64 SNPs were obtained from 2,552 European- and African-American subjects (1,227 cases and 1,325 controls) from the Carolina Head and Neck Cancer Epidemiology Study, a population-based case-control study of SCCHN conducted in North Carolina from 2002 to 2006. We estimated ORs and 95% confidence intervals (CI) for SNPs and haplotypes, adjusting for age, sex, race, and duration of cigarette smoking. P values were adjusted for multiple testing using Bonferroni correction. RESULTS:Two SNPs were associated with SCCHN risk: ADH1B rs1229984 A allele (OR = 0.7; 95% CI, 0.6-0.9) and ALDH2 rs2238151 C allele (OR = 1.2; 95% CI, 1.1-1.4). Three were associated with subsite tumors: ADH1B rs17028834 C allele (larynx, OR = 1.5; 95% CI, 1.1-2.0), SOD2 rs4342445 A allele (oral cavity, OR = 1.3; 95% CI, 1.1-1.6), and SOD2 rs5746134 T allele (hypopharynx, OR = 2.1; 95% CI, 1.2-3.7). Four SNPs in alcohol metabolism genes interacted additively with alcohol consumption: ALDH2 rs2238151, ADH1B rs1159918, ADH7 rs1154460, and CYP2E1 rs2249695. No alcohol interactions were found for oxidative stress SNPs. CONCLUSIONS AND IMPACT:Previously unreported associations of SNPs in ALDH2, CYP2E1, GPX2, SOD1, and SOD2 with SCCHN and subsite tumors provide evidence that alterations in alcohol and oxidative stress pathways influence SCCHN carcinogenesis and warrant further investigation.
Project description:We aimed to examine the effect of alcohol consumption on lung cancer risk stratified by smoking, and to explore whether the impact of alcohol was modified by familial susceptibility to cancer. We recruited 1208 male lung cancer incident cases and 1069 community referents during 2004-2006 and collected their lifetime history of alcohol consumption, cigarette smoking, and family cancer history. Unconditional multivariate logistic regression analysis was performed to estimate the adjusted odds ratio (OR). We tested multiplicative-scale interaction between exposures of interest and examined the additive-scale interaction using synergy index. A moderate association between frequent alcohol consumption and lung cancer was observed among men who had family cancer history (OR = 4.22, 95%CI: 2.46-7.23) after adjustment of smoking and other confounders, while the alcohol effect among men without family history was weak (OR = 1.24, 95%CI: 0.95-1.63) and it became no excess in the never smokers. We observed a consistent synergistic effect between alcohol drinking and family cancer history for all lung cancers and the adenocarcinoma, while there was no multiplicative-scale interaction between the exposures of interest (likelihood ratio test for interaction, p>0.05). Our study revealed a possible synergistic effect between alcohol consumption and familial susceptibility for lung cancer risk; however, this observed possible association needs to be confirmed by future larger analytic studies with more never smoking cases.
Project description:Alcoholism is a complex behavior trait influenced by multiple genes as well as by sociocultural factors. Alcohol metabolism is one of the biological determinants that can significantly influence drinking behaviors. Alcohol sensitivity is thought to be a behavioral trait marker for susceptibility to develop alcoholism. The subjective perceptions would be an indicator for the alcohol preference. To investigate alcohol sensitivity for the variants ADH1B*2 and ALDH2*2, sixty healthy young males with different combinatory ADH1B and ALDH2 genotypes, ADH1B*2/*2-ALDH2*1/*1 (n = 23), ADH1B*2/*2-ALDH2*1/*2 (n = 27), and ADH1B*1/*1-ALDH2*1/*1 (n = 10), participated in the study. The subjective perceptions were assessed by a structured scale, and blood ethanol and acetaldehyde were determined by GC and HPLC after an alcohol challenge in two dose sessions (0.3 g/kg or 0.5 g/kg ethanol). The principal findings are (1) dose-dependent increase of blood ethanol concentration, unaffected by ADH1B or ALDH2; (2) significant build-up of blood acetaldehyde, strikingly influenced by the ALDH2*2 gene allele and correlated with the dose of ingested alcohol; (3) the increased heart rate and subjective sensations caused by acetaldehyde accumulation in the ALDH2*2 heterozygotes; (4) no significant effect of ADH1B polymorphism in alcohol metabolism or producing the psychological responses. The study findings provide the evidence of acetaldehyde potentiating the alcohol sensitivity and feedback to self-control the drinking amount. The results indicate that ALDH2*2 plays a major role for acetaldehyde-related physiological negative responses and prove the genetic protection against development of alcoholism in East Asians.
Project description:Excessive alcohol consumption is one of the most significant causes of morbidity and mortality worldwide. Alcohol is oxidized to toxic and carcinogenic acetaldehyde by alcohol dehydrogenase (ADH) and further oxidized to a non-toxic acetate by aldehyde dehydrogenase (ALDH). There are two major ALDH isoforms, cytosolic and mitochondrial, encoded by ALDH1 and ALDH2 genes, respectively. The ALDH2 polymorphism is associated with flushing response to alcohol use. Emerging evidence shows that Lactobacillus and Bifidobacterium species encode alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) mediate alcohol and acetaldehyde metabolism, respectively. A randomized, double-blind, placebo-controlled crossover clinical trial was designed to study the effects of Lactobacillus and Bifidobacteriumprobiotic mixture in humans and assessed their effects on alcohol and acetaldehyde metabolism. Here, twenty-seven wild types (ALDH2*1/*1) and the same number of heterozygotes (ALDH2*2/*1) were recruited for the study. The enrolled participants were randomly divided into either the probiotic (Duolac ProAP4) or the placebo group. Each group received a probiotic or placebo capsule for 15 days with subsequent crossover. Primary outcomes were measurement of alcohol and acetaldehyde in the blood after the alcohol intake. Blood levels of alcohol and acetaldehyde were significantly downregulated by probiotic supplementation in subjects with ALDH2*2/*1 genotype, but not in those with ALDH2*1/*1 genotype. However, there were no marked improvements in hangover score parameters between test and placebo groups. No clinically significant changes were observed in safety parameters. These results suggest that Duolac ProAP4 has a potential to downregulate the alcohol and acetaldehyde concentrations, and their effects depend on the presence or absence of polymorphism on the ALDH2 gene.
Project description:The cause of multiple myeloma (MM) remains largely unknown. Several pieces of evidence support the involvement of genetic and multiple environmental factors (i.e., chemical agents) in MM onset. The inter-individual variability in the bioactivation, detoxification, and clearance of chemical carcinogens such as asbestos, benzene, and pesticides might increase the MM risk. This inter-individual variability can be explained by the presence of polymorphic variants in absorption, distribution, metabolism, and excretion (ADME) genes. Despite the high relevance of this issue, few studies have focused on the inter-individual variability in ADME genes in MM risk. To identify new MM susceptibility loci, we performed an extended candidate gene approach by comparing high-throughput genotyping data of 1936 markers in 231 ADME genes on 64 MM patients and 59 controls from the CEU population. Differences in genotype and allele frequencies were validated using an internal control group of 35 non-cancer samples from the same geographic area as the patient group. We detected an association between MM risk and ADH1B rs1229984 (OR = 3.78; 95% CI, 1.18-12.13; p = 0.0282), PPARD rs6937483 (OR = 3.27; 95% CI, 1.01-10.56; p = 0.0479), SLC28A1 rs8187737 (OR = 11.33; 95% CI, 1.43-89.59; p = 0.005), SLC28A2 rs1060896 (OR = 6.58; 95% CI, 1.42-30.43; p = 0.0072), SLC29A1 rs8187630 (OR = 3.27; 95% CI, 1.01-10.56; p = 0.0479), and ALDH3A2 rs72547554 (OR = 2.46; 95% CI, 0.64-9.40; p = 0.0293). The prognostic value of these genes in MM was investigated in two public datasets showing that shorter overall survival was associated with low expression of ADH1B and SLC28A1. In conclusion, our proof-of-concept findings provide novel insights into the genetic bases of MM susceptibility.
Project description:Heavy maternal alcohol consumption during early pregnancy increases the risk of oral clefts, but little is known about how genetic variation in alcohol metabolism affects this association. Variants in the alcohol dehydrogenase 1C (ADH1C) gene may modify the association between alcohol and clefts. In a population-based case-control study carried out in Norway (1996-2001), the authors examined the association between maternal alcohol consumption and risk of oral clefts according to mother and infant ADH1C haplotypes encoding fast or slow alcohol-metabolizing phenotypes. Subjects were 483 infants with oral cleft malformations and 503 control infants and their mothers, randomly selected from all other livebirths taking place during the same period. Mothers who consumed 5 or more alcoholic drinks per sitting during the first trimester of pregnancy had an elevated risk of oral cleft in their offspring (odds ratio (OR) = 2.6, 95% confidence interval (CI): 1.4, 4.7). This increased risk was evident only in mothers or children who carried the ADH1C haplotype associated with reduced alcohol metabolism (OR= 3.0, 95% CI: 1.4, 6.8). There was no evidence of alcohol-related risk when both mother and infant carried only the rapid-metabolism ADH1C variant (OR = 0.9, 95% CI: 0.2, 4.1). The teratogenic effect of alcohol may depend on the genetic capacity of the mother and fetus to metabolize alcohol.