Unknown

Dataset Information

0

Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects.


ABSTRACT: Phosphorylation of respiratory chain components has emerged as a mode of regulation of mitochondrial energy metabolism, but its mechanisms are still largely unexplored. A recently discovered intramitochondrial signalling pathway links CO(2) generated by the Krebs cycle with the respiratory chain, through the action of a mitochondrial soluble adenylyl cyclase (mt-sAC). Cytochrome oxidase (COX), whose deficiency causes a number of fatal metabolic disorders, is a key mitochondrial enzyme activated by mt-sAC. We have now discovered that the mt-sAC pathway modulates mitochondrial biogenesis in a reactive oxygen species dependent manner, in cultured cells and in animals with COX deficiency. We show that upregulation of mt-sAC normalizes reactive oxygen species production and mitochondrial biogenesis, thereby restoring mitochondrial function. This is the first example of manipulation of a mitochondrial signalling pathway to achieve a direct positive modulation of COX, with clear implications for the development of novel approaches to treat mitochondrial diseases.

SUBMITTER: Acin-Perez R 

PROVIDER: S-EPMC2814779 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4202101 | biostudies-literature
| S-EPMC125260 | biostudies-literature
| S-EPMC5037342 | biostudies-literature
| S-EPMC7402335 | biostudies-literature
| S-EPMC196863 | biostudies-literature
| S-EPMC2685657 | biostudies-literature
| S-EPMC3092367 | biostudies-literature
| S-EPMC5111777 | biostudies-literature
2021-10-01 | GSE175470 | GEO
| S-EPMC9160823 | biostudies-literature