Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants.
Ontology highlight
ABSTRACT: Hierarchical properties characterize elephant fission-fusion social organization whereby stable groups of individuals coalesce into higher order groups or split in a predictable manner. This hierarchical complexity is rare among animals and, as such, an examination of the factors driving its emergence offers unique insight into the evolution of social behaviour. Investigation of the genetic basis for such social affiliation demonstrates that while the majority of core social groups (second-tier affiliates) are significantly related, this is not exclusively the case. As such, direct benefits received through membership of these groups appear to be salient to their formation and maintenance. Further analysis revealed that the majority of groups in the two higher social echelons (third and fourth tiers) are typically not significantly related. The majority of third-tier members are matrilocal, carrying the same mtDNA control region haplotype, while matrilocality among fourth-tier groups was slightly less than expected at random. Comparison of results to those from a less disturbed population suggests that human depredation, leading to social disruption, altered the genetic underpinning of social relations in the study population. These results suggest that inclusive fitness benefits may crystallize elephant hierarchical social structuring along genetic lines when populations are undisturbed. However, indirect benefits are not critical to the formation and maintenance of second-, third- or fourth-tier level bonds, indicating the importance of direct benefits in the emergence of complex, hierarchical social relations among elephants. Future directions and conservation implications are discussed.
SUBMITTER: Wittemyer G
PROVIDER: S-EPMC2817196 | biostudies-literature | 2009 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA