Unknown

Dataset Information

0

Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer.


ABSTRACT: Aldo-keto reductase (AKR) 1C3 (type 5 17beta-hydroxysteroid dehydrogenase and prostaglandin F synthase), may stimulate proliferation via steroid hormone and prostaglandin (PG) metabolism in the breast. Purified recombinant AKR1C3 reduces PGD(2) to 9alpha,11beta-PGF(2), Delta(4)-androstenedione to testosterone, progesterone to 20alpha-hydroxyprogesterone, and to a lesser extent, estrone to 17beta-estradiol. We established MCF-7 cells that stably express AKR1C3 (MCF-7-AKR1C3 cells) to model its over-expression in breast cancer. AKR1C3 expression increased steroid conversion by MCF-7 cells, leading to a pro-estrogenic state. Unexpectedly, estrone was reduced fastest by MCF-7-AKR1C3 cells when compared to other substrates at 0.1muM. MCF-7-AKR1C3 cells proliferated three times faster than parental cells in response to estrone and 17beta-estradiol. AKR1C3 therefore represents a potential target for attenuating estrogen receptor alpha induced proliferation. MCF-7-AKR1C3 cells also reduced PGD(2), limiting its dehydration to form PGJ(2) products. The AKR1C3 product was confirmed as 9alpha,11beta-PGF(2) and quantified with a stereospecific stable isotope dilution liquid chromatography-mass spectrometry method. This method will allow the examination of the role of AKR1C3 in endogenous prostaglandin formation in response to inflammatory stimuli. Expression of AKR1C3 reduced the anti-proliferative effects of PGD(2) on MCF-7 cells, suggesting that AKR1C3 limits peroxisome proliferator activated receptor gamma (PPARgamma) signaling by reducing formation of 15-deoxy-Delta(12,14)-PGJ(2) (15dPGJ(2)).

SUBMITTER: Byrns MC 

PROVIDER: S-EPMC2819162 | biostudies-literature | 2010 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer.

Byrns Michael C MC   Duan Ling L   Lee Seon Hwa SH   Blair Ian A IA   Penning Trevor M TM  

The Journal of steroid biochemistry and molecular biology 20091228 3


Aldo-keto reductase (AKR) 1C3 (type 5 17beta-hydroxysteroid dehydrogenase and prostaglandin F synthase), may stimulate proliferation via steroid hormone and prostaglandin (PG) metabolism in the breast. Purified recombinant AKR1C3 reduces PGD(2) to 9alpha,11beta-PGF(2), Delta(4)-androstenedione to testosterone, progesterone to 20alpha-hydroxyprogesterone, and to a lesser extent, estrone to 17beta-estradiol. We established MCF-7 cells that stably express AKR1C3 (MCF-7-AKR1C3 cells) to model its ov  ...[more]

Similar Datasets

| S-EPMC5724044 | biostudies-literature
| S-EPMC8156851 | biostudies-literature
| S-EPMC6405412 | biostudies-literature
| S-EPMC2838309 | biostudies-literature