Effect of rapid human N-acetyltransferase 2 haplotype on DNA damage and mutagenesis induced by 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx).
Ontology highlight
ABSTRACT: Heterocyclic amines such as 2-amino-3-methylimidazo-[4,5-f]quinoline (IQ) and 2-amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MeIQx) are dietary carcinogens generated when meats are cooked well-done. Bioactivation includes N-hydroxylation catalyzed by cytochrome P4501A2 (CYP1A2) followed by O-acetylation catalyzed by N-acetyltransferase 2 (NAT2). Nucleotide excision repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human CYP1A2 and either NAT2*4 (rapid acetylator) or NAT2*5B (slow acetylator) alleles were treated with IQ or MeIQx to examine the effect of NAT2 genetic polymorphism on IQ- or MeIQx-induced DNA adducts and mutagenesis. MeIQx and IQ both induced decreases in cell survival and significantly (p<0.001) greater number of endogenous hypoxanthine phosphoribosyl transferase (hprt) mutants in the CYP1A2/NAT2*4 than the CYP1A2/NAT2*5B cell line. IQ- and MeIQx-induced hprt mutant cDNAs were sequenced and over 85% of the mutations were single-base substitutions with the remainder exon deletions likely caused by splice-site mutations. For the single-base substitutions, over 85% were at G:C base pairs. Deoxyguanosine (dG)-C8-IQ and dG-C8-MeIQx adducts were significantly (p<0.001) greater in the CYP1A2/NAT2*4 than the CYP1A2/NAT2*5B cell line. DNA adduct levels correlated very highly with hprt mutants for both IQ and MeIQx. These results suggest substantially increased risk for IQ- and MeIQx-induced DNA damage and mutagenesis in rapid NAT2 acetylators.
SUBMITTER: Metry KJ
PROVIDER: S-EPMC2820402 | biostudies-literature | 2010 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA