Unknown

Dataset Information

0

Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species.


ABSTRACT: The bacterial elongation factor P (EF-P) is strictly conserved in bacteria and essential for protein synthesis. It is homologous to the eukaryotic translation initiation factor 5A (eIF5A). A highly conserved eIF5A lysine is modified into an unusual amino acid derived from spermidine, hypusine. Hypusine is absolutely required for eIF5A's role in translation in Saccharomyces cerevisiae. The homologous lysine of EF-P is also modified to a spermidine derivative in Escherichia coli. However, the biosynthesis pathway of this modification in the bacterial EF-P is yet to be elucidated.Here we propose a potential mechanism for the post-translational modification of EF-P. By using comparative genomic methods based on physical clustering and phylogenetic pattern analysis, we identified two protein families of unknown function, encoded by yjeA and yjeK genes in E. coli, as candidates for this missing pathway. Based on the analysis of the structural and biochemical properties of both protein families, we propose two potential mechanisms for the modification of EF-P.This hypothesis could be tested genetically by constructing a bacterial strain with a tagged efp gene. The tag would allow the purification of EF-P by affinity chromatography and the analysis of the purified protein by mass spectrometry. yjeA or yjeK could then be deleted in the efp tagged strain and the EF-P protein purified from each mutant analyzed by mass spectrometry for the presence or the absence of the modification. This hypothesis can also be tested by purifying the different components (YjeK, YjeA and EF-P) and reconstituting the pathway in vitro.The requirement for a fully modified EF-P for protein synthesis in certain bacteria implies the presence of specific post-translational modification mechanism in these organisms. All of the 725 bacterial genomes analyzed, possess an efp gene but only 200 (28%) possess both yjeA and yjeK genes. In the other organisms, EF-P may be modified by another pathway or the translation machinery must have adapted to the lack of EF-P modification. Our hypotheses, if confirmed, will lead to the discovery of a new post-translational modification pathway.This article was reviewed by Céline Brochier-Armanet, Igor B. Zhulin and Mikhail Gelfand. For the full reviews, please go to the Reviewers' reports section.

SUBMITTER: Bailly M 

PROVIDER: S-EPMC2821294 | biostudies-literature | 2010 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species.

Bailly Marc M   de Crécy-Lagard Valérie V  

Biology direct 20100113


<h4>Background</h4>The bacterial elongation factor P (EF-P) is strictly conserved in bacteria and essential for protein synthesis. It is homologous to the eukaryotic translation initiation factor 5A (eIF5A). A highly conserved eIF5A lysine is modified into an unusual amino acid derived from spermidine, hypusine. Hypusine is absolutely required for eIF5A's role in translation in Saccharomyces cerevisiae. The homologous lysine of EF-P is also modified to a spermidine derivative in Escherichia coli  ...[more]

Similar Datasets

| S-EPMC6544042 | biostudies-literature
| S-EPMC6217735 | biostudies-literature
| S-EPMC5387672 | biostudies-literature
| S-EPMC3268417 | biostudies-literature
| S-EPMC6036757 | biostudies-literature
| S-EPMC3578039 | biostudies-literature
| S-EPMC3349990 | biostudies-literature
| S-EPMC2548416 | biostudies-literature
2020-08-26 | GSE156817 | GEO
| S-EPMC3265757 | biostudies-literature