Unknown

Dataset Information

0

Predominant occupation of the class I MHC molecule H-2Kwm7 with a single self-peptide suggests a mechanism for its diabetes-protective effect.


ABSTRACT: Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic beta cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD4(+) and CD8(+) T cells in the pathogenesis of T1D. Although a large body of work has permitted the identification of multiple mechanisms to explain the diabetes-protective effect of particular class II MHC alleles, studies examining the protective influence of class I alleles are lacking. Here, we explored this question by performing biochemical and structural analyses of the murine class I MHC molecule H-2K(wm7), which exerts a diabetes-protective effect in NOD mice. We have found that H-2K(wm7) molecules are predominantly occupied by the single self-peptide VNDIFERI, derived from the ubiquitous protein histone H2B. This unexpected finding suggests that the inability of H-2K(wm7) to support T1D development could be due, at least in part, to the failure of peptides from critical beta-cell antigens to adequately compete for binding and be presented to T cells. Predominant presentation of a single peptide would also be expected to influence T-cell selection, potentially leading to a reduced ability to select a diabetogenic CD8(+) T-cell repertoire. The report that one of the predominant peptides bound by T1D-protective HLA-A*31 is histone derived suggests the potential translation of our findings to human diabetes-protective class I MHC molecules.

SUBMITTER: Brims DR 

PROVIDER: S-EPMC2829095 | biostudies-literature | 2010 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Predominant occupation of the class I MHC molecule H-2Kwm7 with a single self-peptide suggests a mechanism for its diabetes-protective effect.

Brims Daniel R DR   Qian Jie J   Jarchum Irene I   Mikesh Leann L   Palmieri Edith E   Ramagopal Udupi A UA   Malashkevich Vladimir N VN   Chaparro Rodolfo J RJ   Lund Torben T   Hattori Masakazu M   Shabanowitz Jeffrey J   Hunt Donald F DF   Nathenson Stanley G SG   Almo Steven C SC   Dilorenzo Teresa P TP  

International immunology 20100121 3


Type 1 diabetes (T1D) is an autoimmune disease characterized by T cell-mediated destruction of insulin-producing pancreatic beta cells. In both humans and the non-obese diabetic (NOD) mouse model of T1D, class II MHC alleles are the primary determinant of disease susceptibility. However, class I MHC genes also influence risk. These findings are consistent with the requirement for both CD4(+) and CD8(+) T cells in the pathogenesis of T1D. Although a large body of work has permitted the identifica  ...[more]

Similar Datasets

| S-EPMC124507 | biostudies-literature
| S-EPMC6545463 | biostudies-literature
| S-EPMC2695398 | biostudies-literature
| S-EPMC1201352 | biostudies-literature
| S-EPMC3195949 | biostudies-literature
| S-EPMC3288754 | biostudies-literature
2019-01-21 | GSE114484 | GEO
| S-EPMC3085167 | biostudies-literature
| S-EPMC4920078 | biostudies-literature
| S-EPMC5003427 | biostudies-literature