The pharmacological chaperone N-butyldeoxynojirimycin enhances enzyme replacement therapy in Pompe disease fibroblasts.
Ontology highlight
ABSTRACT: In spite of the progress in the treatment of lysosomal storage diseases (LSDs), in some of these disorders the available therapies show limited efficacy and a need exists to identify novel therapeutic strategies. We studied the combination of enzyme replacement and enzyme enhancement by pharmacological chaperones in Pompe disease (PD), a metabolic myopathy caused by the deficiency of the lysosomal acid alpha-glucosidase. We showed that coincubation of Pompe fibroblasts with recombinant human alpha-glucosidase and the chaperone N-butyldeoxynojirimycin (NB-DNJ) resulted in more efficient correction of enzyme activity. The chaperone improved alpha-glucosidase delivery to lysosomes, enhanced enzyme maturation, and increased enzyme stability. Improved enzyme correction was also found in vivo in a mouse model of PD treated with coadministration of single infusions of recombinant human alpha-glucosidase and oral NB-DNJ. The enhancing effect of chaperones on recombinant enzymes was also observed in fibroblasts from another lysosomal disease, Fabry disease, treated with recombinant alpha-galactosidase A and the specific chaperone 1-deoxygalactonojirimycin (DGJ). These results have important clinical implications, as they demonstrate synergy between pharmacological chaperones and enzyme replacement. A synergistic effect of these treatments may result particularly useful in patients responding poorly to therapy and in tissues in which sufficient enzyme levels are difficult to obtain.
SUBMITTER: Porto C
PROVIDER: S-EPMC2835191 | biostudies-literature | 2009 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA