Unknown

Dataset Information

0

A cassette of N-terminal amino acids of histone H2B are required for efficient cell survival, DNA repair and Swi/Snf binding in UV irradiated yeast.


ABSTRACT: The highly charged histone N-terminal domains are engaged in inter- and intra-nucleosomal interactions, and contain a host of sites used for posttranslational modification. We have studied the effect of deleting residues 30-37 from the N-terminal domain of histone H2B in yeast cells, on nucleotide excision repair (NER) following UV irradiation, as these cells are quite sensitive to UV. We find that H2B Delta30-37 cells exhibit reduced NER efficiency at three specific chromatin loci: the transcriptionally active, RPB2 locus; the transcriptionally silenced, nucleosome-loaded HML locus; and the transcriptionally repressed, non-silenced, GAL10 locus. Nuclease digestion studies indicate that H2B Delta30-37 chromatin has increased nucleosome accessibility and/or nucleosome mobility. In addition, H2B Delta30-37 mutants acquire more DNA damage, compared to wt cells, following the same dose of UV radiation. Reducing the level of damage in H2B Delta30-37 cells to match that of wt cells restores the NER rate to wt levels in the RPB2 and GAL10 loci, but NER efficiency remains low in the silenced HML locus. Interestingly, recruitment of Snf5 to the HML locus is reduced in H2B Delta30-37 cells and more transient following UV irradiation. This may reflect a lower binding affinity of the SWI/SNF complex to H2B Delta30-37 nucleosomes.

SUBMITTER: Nag R 

PROVIDER: S-EPMC2836547 | biostudies-literature | 2010 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

A cassette of N-terminal amino acids of histone H2B are required for efficient cell survival, DNA repair and Swi/Snf binding in UV irradiated yeast.

Nag Ronita R   Kyriss McKenna M   Smerdon John W JW   Wyrick John J JJ   Smerdon Michael J MJ  

Nucleic acids research 20091209 5


The highly charged histone N-terminal domains are engaged in inter- and intra-nucleosomal interactions, and contain a host of sites used for posttranslational modification. We have studied the effect of deleting residues 30-37 from the N-terminal domain of histone H2B in yeast cells, on nucleotide excision repair (NER) following UV irradiation, as these cells are quite sensitive to UV. We find that H2B Delta30-37 cells exhibit reduced NER efficiency at three specific chromatin loci: the transcri  ...[more]

Similar Datasets

| S-EPMC2838063 | biostudies-literature
| S-EPMC5949990 | biostudies-literature
| S-EPMC2897581 | biostudies-literature
| S-EPMC2559950 | biostudies-literature
| S-EPMC7340788 | biostudies-literature
| S-EPMC522799 | biostudies-other
| S-EPMC3098484 | biostudies-literature
| S-EPMC9609377 | biostudies-literature
| S-EPMC4628061 | biostudies-literature
| S-EPMC6727805 | biostudies-literature