Unknown

Dataset Information

0

Signaling components of redox active endosomes: the redoxosomes.


ABSTRACT: Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47phox, p67phox, and/or Rac1), ROS processing enzymes (SOD1 and/or peroxiredoxins), chloride channels capable of mediating superoxide transport and/or membrane gradients required for Nox activity, and novel redox-dependent sensors that control Nox activity. This review will discuss the cytokine and growth factor receptors that likely mediate signaling through redox-active endosomes, and the common mechanisms whereby they act. Additionally, the review will cover ligand-independent environmental injuries, such as hypoxia/reoxygenation injury, that also appear to facilitate cell signaling through NADPH oxidase at the level of the endosome. We suggest that redox-active endosomes encompass a subset of signaling endosomes that we have termed redoxosomes. Redoxosomes are uniquely equipped with redox-processing proteins capable of transmitting ROS signals from the endosome interior to redox-sensitive effectors on the endosomal surface. In this manner, redoxosomes can control redox-dependent effector functions through the spatial and temporal regulation of ROS as second messengers.

SUBMITTER: Oakley FD 

PROVIDER: S-EPMC2842130 | biostudies-literature | 2009 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Signaling components of redox active endosomes: the redoxosomes.

Oakley Fredrick D FD   Abbott Duane D   Li Qiang Q   Engelhardt John F JF  

Antioxidants & redox signaling 20090601 6


Subcellular compartmentalization of reactive oxygen species (ROS) plays a critical role in transmitting cell signals in response to environmental stimuli. In this regard, signals at the plasma membrane have been shown to trigger NADPH oxidase-dependent ROS production within the endosomal compartment and this step can be required for redox-dependent signal transduction. Unique features of redox-active signaling endosomes can include NADPH oxidase complex components (Nox1, Noxo1, Noxa1, Nox2, p47p  ...[more]

Similar Datasets

| S-EPMC5909833 | biostudies-literature
| S-EPMC4164656 | biostudies-literature
| S-EPMC2872256 | biostudies-literature
| S-EPMC6726494 | biostudies-literature
| S-EPMC3021064 | biostudies-literature
| S-EPMC2764915 | biostudies-literature
| S-EPMC5248651 | biostudies-literature
| S-EPMC4024873 | biostudies-other
| S-EPMC3031173 | biostudies-literature
| S-EPMC1941461 | biostudies-literature