Unknown

Dataset Information

0

Histone deacetylase inhibitors activate NF-kappaB in human leukemia cells through an ATM/NEMO-related pathway.


ABSTRACT: Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-kappaB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (gamma-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-kappaB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-kappaB activation (e.g. in I kappaB alpha super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-kappaB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-kappaB activation, blocked TNFalpha- but not HDACI-mediated NF-kappaB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-kappaB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, gamma-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-kappaB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-kappaB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.

SUBMITTER: Rosato RR 

PROVIDER: S-EPMC2843169 | biostudies-literature | 2010 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Histone deacetylase inhibitors activate NF-kappaB in human leukemia cells through an ATM/NEMO-related pathway.

Rosato Roberto R RR   Kolla Sarah S SS   Hock Stefanie K SK   Almenara Jorge A JA   Patel Ankita A   Amin Sanjay S   Atadja Peter P   Fisher Paul B PB   Dent Paul P   Grant Steven S  

The Journal of biological chemistry 20100111 13


Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-kappaB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (gamma-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-kappaB-dependent induct  ...[more]

Similar Datasets

| S-EPMC2083698 | biostudies-literature
| S-EPMC5144080 | biostudies-literature
| S-EPMC3947652 | biostudies-literature
| S-EPMC9889916 | biostudies-literature
| S-EPMC10510730 | biostudies-literature
| S-EPMC2447141 | biostudies-literature
| S-EPMC3821775 | biostudies-literature
| S-EPMC2593472 | biostudies-other
| S-EPMC2728158 | biostudies-literature
| S-EPMC2259214 | biostudies-other