Flow cytometry-based methods for assessing soluble scFv activities and detecting antigens in solution.
Ontology highlight
ABSTRACT: Novel methods are reported for evaluating and utilizing single chain fragment variable (scFv) antibodies derived from yeast-display libraries. Yeast-display was used to select scFv specific to invariant surface glycoproteins (ISG) of Trypanosoma brucei. A limiting step in the isolation of scFv from non-immune libraries is the conversion of highly active yeast-displayed scFv into soluble antibodies that can be used in standard immunoassays. Challenges include limited solubility or activity following secretion and purification of scFv. For this reason, few scFv derived from yeast-display platforms have moved into development and implementation as diagnostic reagents. To address this problem, assays were developed that employ both yeast-displayed and -secreted scFv as analytical reagents. The first is a competitive inhibition flow cytometry (CIFC) assay that detects secreted scFv by virtue of their ability to competitively inhibit the binding of biotinylated antigen to yeast-displayed scFv. The second is an epitope binning assay that uses secreted scFv to identify additional yeast-displayed scFv that bind non-overlapping or non-competing epitopes on an antigen. The epitope binning assay was used not only to identify sandwich assay pairs with yeast-displayed scFv, but also to identify active soluble scFv present in low concentration in a crude expression extract. Finally, a CIFC assay was developed that bypasses entirely the need for soluble scFv expression, by using yeast-displayed scFv to detect unlabeled antigen in samples. These methods will facilitate the continued development and practical implementation of scFv derived from yeast-display libraries.
SUBMITTER: Gray SA
PROVIDER: S-EPMC2851250 | biostudies-literature | 2010 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA