Unknown

Dataset Information

0

Polarization of migrating monocytic cells is independent of PI 3-kinase activity.


ABSTRACT:

Background

Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization.

Methodology/principal findings

We present a novel model for the investigation of human leukocyte migration. Monocytic THP-1 cells transfected with the alpha(2A)-adrenoceptor (alpha(2A)AR) display comparable signal transduction responses, such as calcium mobilization, MAP-kinase activation and chemotaxis, to the noradrenaline homologue UK 14'304 as when stimulated with CCL2, which binds to the endogenous chemokine receptor CCR2. Time-lapse video microscopy reveals that chemotactic receptors remain evenly distributed over the plasma membrane and that their internalization is not required for migration. Measurements of intramolecular fluorescence resonance energy transfer (FRET) of alpha(2A)AR-YFP/CFP suggest a uniform activation of the receptors over the entire plasma membrane. Nevertheless, PI 3-kinase activation is confined to the leading edge. When reverting the gradient of chemoattractant by moving the dispensing micropipette, polarized monocytes--in contrast to neutrophils--rapidly flip their polarization axis by developing a new leading edge at the previous posterior side. Flipping of the polarization axis is accompanied by re-localization of PI-3-kinase activity to the new leading edge. However, reversal of the polarization axis occurs in the absence of PI 3-kinase activation.

Conclusions/significance

Accumulation and internalization of chemotactic receptors at the leading edge is dispensable for cell migration. Furthermore, uniformly distributed receptors allow the cells to rapidly reorient and adapt to changes in the attractant cue. Polarized monocytes, which display typical amoeboid like motility, can rapidly develop a new leading edge facing the highest chemoattractant concentration at any site of the plasma membrane, including the uropod. The process appears to be independent of PI 3-kinase activity.

SUBMITTER: Volpe S 

PROVIDER: S-EPMC2855346 | biostudies-literature | 2010 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Polarization of migrating monocytic cells is independent of PI 3-kinase activity.

Volpe Silvia S   Thelen Sylvia S   Pertel Thomas T   Lohse Martin J MJ   Thelen Marcus M  

PloS one 20100415 4


<h4>Background</h4>Migration of mammalian cells is a complex cell type and environment specific process. Migrating hematopoietic cells assume a rapid amoeboid like movement when exposed to gradients of chemoattractants. The underlying signaling mechanisms remain controversial with respect to localization and distribution of chemotactic receptors within the plasma membrane and the role of PI 3-kinase activity in cell polarization.<h4>Methodology/principal findings</h4>We present a novel model for  ...[more]

Similar Datasets

| S-EPMC3325765 | biostudies-literature
| S-EPMC7896345 | biostudies-literature
| S-EPMC3737417 | biostudies-literature
| S-EPMC2984446 | biostudies-literature
| S-EPMC7360550 | biostudies-literature
| S-EPMC3731339 | biostudies-literature
| S-EPMC8050074 | biostudies-literature
| S-EPMC2229650 | biostudies-literature
| S-EPMC2413063 | biostudies-literature
| S-EPMC1828885 | biostudies-other