Cdcs1 a major colitis susceptibility locus in mice; subcongenic analysis reveals genetic complexity.
Ontology highlight
ABSTRACT: The cytokine-deficiency-induced colitis susceptibility (Cdcs)1 locus is a major modifier of murine inflammatory bowel disease (IBD) and was originally identified in experimental crosses of interleukin-10-deficient (Il10(-/-)) mice. Congenic mice, in which this locus was reciprocally transferred between IBD-susceptible C3H/HeJBir-Il10(-/-) and resistant C57BL/6J-Il10(-/-) mice, revealed that this locus likely acts by inducing innate hypo- and adaptive hyperresponsiveness, associated with impaired NF-kappaB responses of macrophages. The aim of the present study was to dissect the complexity of Cdcs1 by further development and characterization of reciprocal Cdcs1 congenic strains and to identify potential candidate genes in the congenic interval.In total, 15 reciprocal congenic strains were generated from Il10(-/-) mice of either C3H/HeJBir or C57BL/6J genetic backgrounds by 10 cycles of backcrossing. Colitis activity was monitored by histological grading. Candidate genes were identified by fine mapping of congenic intervals, sequencing, microarray analysis, and a high-throughput real-time reverse-transcription polymerase chain reaction (RT-PCR) approach using bone marrow-derived macrophages.Within the originally identified Cdcs1-interval, 3 independent regions were detected that likely contain susceptibility-determining genetic factors (Cdcs1.1, Cdcs1.2, and Cdcs1.3). Combining results of candidate gene approaches revealed Fcgr1, Cnn3, Larp7, and Alpk1 as highly attractive candidate genes with polymorphisms in coding or regulatory regions and expression differences between susceptible and resistant mouse strains.Subcongenic analysis of the major susceptibility locus Cdcs1 on mouse chromosome 3 revealed a complex genetic structure. Candidate gene approaches revealed attractive genes within the identified regions.
SUBMITTER: Bleich A
PROVIDER: S-EPMC2857671 | biostudies-literature | 2010 May
REPOSITORIES: biostudies-literature
ACCESS DATA