Ontology highlight
ABSTRACT: Background
The class 1 carcinogen cadmium (Cd2+) disrupts the E-cadherin/beta-catenin complex of epithelial adherens junctions (AJs) and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/beta-catenin signaling are known to contribute to carcinogenesis.Results
We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC). Cd2+ (25 microM, 3-9 h) caused nuclear translocation of beta-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of beta-catenin with AJ components (E-cadherin, alpha-catenin) and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1) were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability.Conclusions
Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.
SUBMITTER: Chakraborty PK
PROVIDER: S-EPMC2873433 | biostudies-literature | 2010 May
REPOSITORIES: biostudies-literature
Molecular cancer 20100508
<h4>Background</h4>The class 1 carcinogen cadmium (Cd2+) disrupts the E-cadherin/beta-catenin complex of epithelial adherens junctions (AJs) and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/beta-catenin signaling are known to contribute to carcinogenesis.<h4>Results</h4>We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC). Cd2+ (25 microM, 3-9 h) caused nuclear translocation of beta-cate ...[more]