CODA: accurate detection of functional associations between proteins in eukaryotic genomes using domain fusion.
Ontology highlight
ABSTRACT: In order to understand how biological systems function it is necessary to determine the interactions and associations between proteins. Gene fusion prediction is one approach to detection of such functional relationships. Its use is however known to be problematic in higher eukaryotic genomes due to the presence of large homologous domain families. Here we introduce CODA (Co-Occurrence of Domains Analysis), a method to predict functional associations based on the gene fusion idiom.We apply a novel scoring scheme which takes account of the genome-specific size of homologous domain families involved in fusion to improve accuracy in predicting functional associations. We show that CODA is able to accurately predict functional similarities in human with comparison to state-of-the-art methods and show that different methods can be complementary. CODA is used to produce evidence that a currently uncharacterised human protein may be involved in pathways related to depression and that another is involved in DNA replication.The relative performance of different gene fusion methodologies has not previously been explored. We find that they are largely complementary, with different methods being more or less appropriate in different genomes. Our method is the only one currently available for download and can be run on an arbitrary dataset by the user. The CODA software and datasets are freely available from ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/v6.1.0/CODA/. Predictions are also available via web services from http://funcnet.eu/.
SUBMITTER: Reid AJ
PROVIDER: S-EPMC2879367 | biostudies-literature | 2010 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA