Unknown

Dataset Information

0

Analysis of video-based microscopic particle trajectories using Kalman filtering.


ABSTRACT: The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes.

SUBMITTER: Wu PH 

PROVIDER: S-EPMC2884229 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Analysis of video-based microscopic particle trajectories using Kalman filtering.

Wu Pei-Hsun PH   Agarwal Ashutosh A   Hess Henry H   Khargonekar Pramod P PP   Tseng Yiider Y  

Biophysical journal 20100601 12


The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to e  ...[more]

Similar Datasets

| S-EPMC2931737 | biostudies-literature
| S-EPMC6631562 | biostudies-literature
| S-EPMC9303052 | biostudies-literature
| S-EPMC6662653 | biostudies-literature
| S-EPMC6248965 | biostudies-literature
| S-EPMC5549500 | biostudies-other
| S-EPMC2856136 | biostudies-literature
| S-EPMC10873426 | biostudies-literature
| S-EPMC6339217 | biostudies-literature
| S-EPMC2567142 | biostudies-literature