Project description:The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis.
Project description:BACKGROUND: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. RESULTS: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. CONCLUSION: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.
Project description:BackgroundProtein kinases (PKs) have emerged as the largest family of signaling proteins in eukaryotic cells and are involved in every aspect of cellular regulation. Great progresses have been made in understanding the mechanisms of PKs phosphorylating their substrates, but the detailed mechanisms, by which PKs ensure their substrate specificity with their structurally conserved catalytic domains, still have not been adequately understood. Correlated mutation analysis based on large sets of diverse sequence data may provide new insights into this question.Methodology/principal findingsStatistical coupling, residue correlation and mutual information analyses along with clustering were applied to analyze the structure-based multiple sequence alignment of the catalytic domains of the Ser/Thr PK family. Two clusters of highly coupled sites were identified. Mapping these positions onto the 3D structure of PK catalytic domain showed that these two groups of positions form two physically close networks. We named these two networks as theta-shaped and gamma-shaped networks, respectively.Conclusions/significanceThe theta-shaped network links the active site cleft and the substrate binding regions, and might participate in PKs recognizing and interacting with their substrates. The gamma-shaped network is mainly situated in one side of substrate binding regions, linking the activation loop and the substrate binding regions. It might play a role in supporting the activation loop and substrate binding regions before catalysis, and participate in product releasing after phosphoryl transfer. Our results exhibit significant correlations with experimental observations, and can be used as a guide to further experimental and theoretical studies on the mechanisms of PKs interacting with their substrates.
Project description:The discovery of cyanobacterial phytochrome histidine kinases, together with the evidence that phytochromes from higher plants display protein kinase activity, bind ATP analogs, and possess C-terminal domains similar to bacterial histidine kinases, has fueled the controversial hypothesis that the eukaryotic phytochrome family of photoreceptors are light-regulated enzymes. Here we demonstrate that purified recombinant phytochromes from a higher plant and a green alga exhibit serine/threonine kinase activity similar to that of phytochrome isolated from dark grown seedlings. Phosphorylation of recombinant oat phytochrome is a light- and chromophore-regulated intramolecular process. Based on comparative protein sequence alignments and biochemical cross-talk experiments with the response regulator substrate of the cyanobacterial phytochrome Cph1, we propose that eukaryotic phytochromes are histidine kinase paralogs with serine/threonine specificity whose enzymatic activity diverged from that of a prokaryotic ancestor after duplication of the transmitter module.
Project description:The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs) that are structurally related to eukaryotic kinases. To gain insight into the role of Ser/Thr phosphorylation in this major global pathogen, we used a phosphoproteomic approach to carry out an extensive analysis of protein phosphorylation in M. tuberculosis. We identified more than 500 phosphorylation events in 301 proteins that are involved in a broad range of functions. Bioinformatic analysis of quantitative in vitro kinase assays on peptides containing a subset of these phosphorylation sites revealed a dominant motif shared by six of the M. tuberculosis STPKs. Kinase assays on a second set of peptides incorporating targeted substitutions surrounding the phosphoacceptor validated this motif and identified additional residues preferred by individual kinases. Our data provide insight into processes regulated by STPKs in M. tuberculosis and create a resource for understanding how specific phosphorylation events modulate protein activity. The results further provide the potential to predict likely cognate STPKs for newly identified phosphoproteins.
Project description:The large number of protein kinases makes it impractical to determine their specificities and substrates experimentally. Using the available crystal structures, molecular modeling, and sequence analyses of kinases and substrates, we developed a set of rules governing the binding of a heptapeptide substrate motif (surrounding the phosphorylation site) to the kinase and implemented these rules in a web-interfaced program for automated prediction of optimal substrate peptides, taking only the amino acid sequence of a protein kinase as input. We show the utility of the method by analyzing yeast cell cycle control and DNA damage checkpoint pathways. Our method is the only available predictive method generally applicable for identifying possible substrate proteins for protein serinethreonine kinases and helps in silico construction of signaling pathways. The accuracy of prediction is comparable to the accuracy of data from systematic large-scale experimental approaches.
Project description:A bioinformatic search was carried for plant homologues of human serine-threonine protein kinases involved in regulation of cell division and microtubule protein phosphorylation (SLK, PAK6, PAK7, MARK1, MAST2, TTBK1, TTBK2, AURKA, PLK1, PLK4 and PASK). A number of SLK, MAST2 and AURKA plant homologues were identified. The closest identified homologue of human AURKA kinase was a protein of unknown function, A7PY12/GSVIVT00026259001 from Vitis vinifera (herein named as "STALK", Serine-Threonine Aurora-Like Kinase). Analysis of STALK's three-dimensional structure confirmed its relationship to the subgroup of AURKA-like protein kinases.
Project description:Genomic studies have revealed the presence of Ser/Thr kinases and phosphatases in many bacterial species, although their physiological roles have largely been unclear. Here we review bacterial Ser/Thr kinases (eSTKs) that show homology in their catalytic domains to eukaryotic Ser/Thr kinases and their partner phosphatases (eSTPs) that are homologous to eukaryotic phosphatases. We first discuss insights into the enzymatic mechanism of eSTK activation derived from structural studies on both the ligand-binding and catalytic domains. We then turn our attention to the identified substrates of eSTKs and eSTPs for a number of species and to the implications of these findings for understanding their physiological roles in these organisms.
Project description:The molecular mechanisms regulating the spectacular cytodifferentiation observed during spermiogenesis are poorly understood. We have recently identified a murine testis-specific serine kinase (tssk) 1, constituting a novel subfamily of serine/threonine kinases. Using low stringency screening we have isolated and molecularly characterized a second closely related family member, tssk 2, which is probably the orthologue of the human DGS-G gene. Expression of tssk 1 and tssk 2 was limited to the testis of sexually mature males. Immunohistochemical staining localized both kinases to the cytoplasm of late spermatids and to structures resembling residual bodies. tssk 1 and tssk 2 were absent in released sperms in the lumen of the seminiferous tubules and the epididymis, demonstrating a tight window of expression restricted to the last stages of spermatid maturation. In vitro kinase assays of immunoprecipitates containing either tssk 1 or tssk 2 revealed no autophosphorylation of the kinases, however, they led to serine phosphorylation of a coprecipitating protein of approximately 65 kD. A search for interacting proteins using the yeast two-hybrid system with tssk 1 and tssk 2 cDNA as baits and a prey cDNA library from mouse testis, led to the isolation of a novel cDNA, interacting specifically with both tssk 1 and tssk 2, and encoding the coprecipitated 65-kD protein phosphorylated by both kinases. Interestingly, expression of the interacting clone was also testis specific and paralleled the developmental expression observed for the kinases themselves. These results represent the first demonstration of the involvement of a distinct kinase family, the tssk serine/threonine kinases, together with a substrate in the cytodifferentiation of late spermatids to sperms.