Charged residues in the C-terminus of the P2Y1 receptor constitute a basolateral-sorting signal.
Ontology highlight
ABSTRACT: The P2Y(1) receptor is localized to the basolateral membrane of polarized Madin-Darby canine kidney (MDCK) cells. In the present study, we identified a 25-residue region within the C-terminal tail (C-tail) of the P2Y(1) receptor that directs basolateral sorting. Deletion of this sorting signal caused redirection of the receptor to the apical membrane, indicating that the region from the N-terminus to transmembrane domain 7 (TM7) contains an apical-sorting signal that is overridden by a dominant basolateral signal in the C-tail. Location of the signal relative to TM7 is crucial, because increasing its distance from the end of TM7 resulted in loss of basolateral sorting. The basolateral-sorting signal does not use any previously established basolateral-sorting motifs, i.e. tyrosine-containing or di-hydrophobic motifs, for function, and it is functional even when inverted or when its amino acids are scrambled, indicating that the signal is sequence independent. Mutagenesis of different classes of amino acids within the signal identified charged residues (five basic and four acidic amino acids in 25 residues) as crucial determinants for sorting function, with amidated amino acids having a lesser role. Mutational analyses revealed that whereas charge balance (+1 overall) of the signal is unimportant, the total number of charged residues (nine), either positive or negative, is crucial for basolateral targeting. These data define a new class of targeting signal that relies on total charge and might provide a common mechanism for polarized trafficking of epithelial proteins.
SUBMITTER: Wolff SC
PROVIDER: S-EPMC2894661 | biostudies-literature | 2010 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA