Unknown

Dataset Information

0

NFAT-induced histone acetylation relay switch promotes c-Myc-dependent growth in pancreatic cancer cells.


ABSTRACT: Induction of immediate early transcription factors (ITF) represents the first transcriptional program controlling mitogen-stimulated cell cycle progression in cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc and its role in pancreatic cancer growth in vitro and in vivo.Expression of ITF proteins was examined by reverse-transcription polymerase chain reaction and immunoblotting, and its implications in cell cycle progression and growth was determined by flow cytometry and [(3)H]-thymidine incorporation. Intracellular Ca(2+) concentrations, calcineurin activity, and cellular nuclear factor of activated T cells (NFAT) distribution were analyzed. Transcription factor complex formations and promoter regulation were examined by immunoprecipitations, reporter gene assays, and chromatin immunoprecipitation. Using a combination of RNA interference knockdown technology and xenograft models, we analyzed the significance for pancreatic cancer tumor growth.Serum promotes pancreatic cancer growth through induction of the proproliferative NFAT/c-Myc axis. Mechanistically, serum increases intracellular Ca(2+) concentrations and activates the calcineurin/NFAT pathway to induce c-Myc transcription. NFAT binds to a serum responsive element within the proximal promoter, initiates p300-dependent histone acetylation, and creates a local chromatin structure permissive for the inducible recruitment of Ets-like gene (ELK)-1, a protein required for maximal activation of the c-Myc promoter. The functional significance of this novel pathway was emphasized by impaired c-Myc expression, G1 arrest, and reduced tumor growth upon NFAT depletion in vitro and in vivo.Our study uncovers a novel mechanism regulating cell growth and identifies the NFAT/ELK complex as modulators of early stages of mitogen-stimulated proliferation in pancreatic cancer cells.

SUBMITTER: Koenig A 

PROVIDER: S-EPMC2895621 | biostudies-literature | 2010 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications


<h4>Background & aims</h4>Induction of immediate early transcription factors (ITF) represents the first transcriptional program controlling mitogen-stimulated cell cycle progression in cancer. Here, we examined the transcriptional mechanisms regulating the ITF protein c-Myc and its role in pancreatic cancer growth in vitro and in vivo.<h4>Methods</h4>Expression of ITF proteins was examined by reverse-transcription polymerase chain reaction and immunoblotting, and its implications in cell cycle p  ...[more]

Similar Datasets

| S-EPMC3574235 | biostudies-literature
| S-EPMC5499659 | biostudies-literature
| S-EPMC4621700 | biostudies-literature
| S-EPMC6684614 | biostudies-literature
| S-EPMC7256045 | biostudies-literature
| S-EPMC6359456 | biostudies-literature
| S-EPMC3533536 | biostudies-literature
| S-EPMC2978554 | biostudies-literature
| S-EPMC1952155 | biostudies-literature
| S-EPMC11347145 | biostudies-literature