Unknown

Dataset Information

0

Targeted inhibition of mammalian target of rapamycin signaling inhibits tumorigenesis of colorectal cancer.


ABSTRACT: The mammalian target of rapamycin (mTOR) kinase acts downstream of phosphoinositide 3-kinase/Akt to regulate cellular growth, metabolism, and cytoskeleton. Because approximately 60% of sporadic colorectal cancers (CRC) exhibit high levels of activated Akt, we determined whether downstream mTOR signaling pathway components are overexpressed and activated in CRCs.HCT116, KM20, Caco-2, and SW480 human CRC cells were used to determine the effects of pharmacologic (using rapamycin) or genetic (using RNAi) blockade of mTOR signaling on cell proliferation, apoptosis, cell cycle progression, and subcutaneous growth in vivo.We show that the mTOR complex proteins mTOR, Raptor, and Rictor are overexpressed in CRC. Treatment with rapamycin significantly decreased proliferation of certain CRC cell lines (rapamycin sensitive), whereas other cell lines were resistant to its effects (rapamycin resistant). Transient siRNA-mediated knockdown of the mTORC2 protein, Rictor, significantly decreased proliferation of both rapamycin-sensitive and rapamycin-resistant CRC cells. Stable shRNA-mediated knockdown of both mTORC1 and mTORC2 decreased proliferation, increased apoptosis, and attenuated cell cycle progression in rapamycin-sensitive CRCs. Moreover, stable knockdown of both mTORC1 and mTORC2 decreased proliferation and attenuated cell cycle progression, whereas only mTORC2 knockdown increased apoptosis in rapamycin-resistant CRCs. Finally, knockdown of both mTORC1 and mTORC2 inhibited growth of rapamycin-sensitive and rapamycin-resistant CRCs in vivo when implanted as tumor xenografts.Targeted inhibition of the mTORC2 protein, Rictor, leads to growth inhibition and induces apoptosis in both rapamycin-sensitive and rapamycin-resistant CRCs, suggesting that selective targeting of mTORC2 may represent a novel therapeutic strategy for treatment of CRC.

SUBMITTER: Gulhati P 

PROVIDER: S-EPMC2898570 | biostudies-literature | 2009 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Targeted inhibition of mammalian target of rapamycin signaling inhibits tumorigenesis of colorectal cancer.

Gulhati Pat P   Cai Qingsong Q   Li Jing J   Liu Jianyu J   Rychahou Piotr G PG   Qiu Suimin S   Lee Eun Y EY   Silva Scott R SR   Bowen Kanika A KA   Gao Tianyan T   Evers B Mark BM  

Clinical cancer research : an official journal of the American Association for Cancer Research 20091124 23


<h4>Purpose</h4>The mammalian target of rapamycin (mTOR) kinase acts downstream of phosphoinositide 3-kinase/Akt to regulate cellular growth, metabolism, and cytoskeleton. Because approximately 60% of sporadic colorectal cancers (CRC) exhibit high levels of activated Akt, we determined whether downstream mTOR signaling pathway components are overexpressed and activated in CRCs.<h4>Experimental design</h4>HCT116, KM20, Caco-2, and SW480 human CRC cells were used to determine the effects of pharma  ...[more]

Similar Datasets

| S-EPMC6990762 | biostudies-literature
| S-EPMC3871936 | biostudies-literature
| S-EPMC3610438 | biostudies-literature
| S-EPMC4777855 | biostudies-literature
| S-EPMC2562339 | biostudies-literature
| S-EPMC3076631 | biostudies-literature
| S-EPMC3995130 | biostudies-literature
| S-EPMC2863215 | biostudies-literature
| S-EPMC2884407 | biostudies-literature
| S-EPMC4823739 | biostudies-literature