Unknown

Dataset Information

0

Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions.


ABSTRACT: Despite the long-established therapeutic efficacy of lithium in the treatment of bipolar disorder (BPD), its molecular mechanism of action remains elusive. Newly developed stable isotope-resolved metabolomics (SIRM) is a powerful approach that can be used to elucidate systematically how lithium impacts glial and neuronal metabolic pathways and activities, leading ultimately to deciphering its molecular mechanism of action. The effect of lithium on the metabolism of three different (13)C-labeled precursors ([U-(13)C]-glucose, (13)C-3-lactate or (13)C-2,3-alanine) was analyzed in cultured rat astrocytes and neurons by nuclear magnetic resonance (NMR) spectroscopy and gas chromatography mass spectrometry (GC-MS). Using [U-(13)C]-glucose, lithium was shown to enhance glycolytic activity and part of the Krebs cycle activity in both astrocytes and neurons, particularly the anaplerotic pyruvate carboxylation (PC). The PC pathway was previously thought to be active in astrocytes but absent in neurons. Lithium also stimulated the extracellular release of (13)C labeled-lactate, -alanine (Ala), -citrate, and -glutamine (Gln) by astrocytes. Interrogation of neuronal pathways using (13)C-3-lactate or (13)C-2,3-Ala as tracers indicated a high capacity of neurons to utilize lactate and Ala in the Krebs cycle, particularly in the production of labeled Asp and Glu via PC and normal cycle activity. Prolonged lithium treatment enhanced lactate metabolism via PC but inhibited lactate oxidation via the normal Krebs cycle in neurons. Such lithium modulation of glycolytic, PC and Krebs cycle activity in astrocytes and neurons as well as release of fuel substrates by astrocytes should help replenish Krebs cycle substrates for Glu synthesis while meeting neuronal demands for energy. Further investigations into the molecular regulation of these metabolic traits should provide new insights into the pathophysiology of mood disorders and early diagnostic markers, as well as new target(s) for effective therapies.

SUBMITTER: Fan TW 

PROVIDER: S-EPMC2903070 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stable isotope-resolved metabolomic analysis of lithium effects on glial-neuronal metabolism and interactions.

Fan Teresa W-M TW   Yuan Peixiong P   Lane Andrew N AN   Higashi Richard M RM   Wang Yun Y   Hamidi Anahita B AB   Zhou Rulun R   Guitart Xavier X   Chen Guang G   Manji Husseini K HK   Kaddurah-Daouk Rima R  

Metabolomics : Official journal of the Metabolomic Society 20100601 2


Despite the long-established therapeutic efficacy of lithium in the treatment of bipolar disorder (BPD), its molecular mechanism of action remains elusive. Newly developed stable isotope-resolved metabolomics (SIRM) is a powerful approach that can be used to elucidate systematically how lithium impacts glial and neuronal metabolic pathways and activities, leading ultimately to deciphering its molecular mechanism of action. The effect of lithium on the metabolism of three different (13)C-labeled  ...[more]

Similar Datasets

| S-EPMC6186330 | biostudies-literature
| S-EPMC8550312 | biostudies-literature
| S-EPMC4486296 | biostudies-literature
| S-EPMC3471671 | biostudies-literature
| S-EPMC8065598 | biostudies-literature
| S-EPMC3109995 | biostudies-literature
| S-EPMC4101711 | biostudies-literature
| S-EPMC2848236 | biostudies-literature
| S-EPMC9274147 | biostudies-literature
| S-EPMC10540389 | biostudies-literature