Unknown

Dataset Information

0

Parallel in vivo and in vitro selection using phage display identifies protease-dependent tumor-targeting peptides.


ABSTRACT: We recently developed activatable cell-penetrating peptides (ACPPs) that target contrast agents to in vivo sites of matrix metalloproteinase activity, such as tumors. Here we use parallel in vivo and in vitro selection with phage display to identify novel tumor-homing ACPPs with no bias for primary sequence or target protease. Specifically, phage displaying a library of ACPPs were either injected into tumor-bearing mice, followed by isolation of cleaved phage from dissected tumor, or isolated based on selective cleavage by extracts of tumor versus normal tissue. Selected sequences were synthesized as fluorescently labeled peptides, and tumor-specific cleavage was confirmed by digestion with tissue extracts. The most efficiently cleaved peptide contained the substrate sequence RLQLKL and labeled tumors and metastases from several cancer models with up to 5-fold contrast. This uniquely identified ACPP was not cleaved by matrix metalloproteinases or various coagulation factors but was efficiently cleaved by plasmin and elastases, both of which have been shown to be aberrantly overexpressed in tumors. The identification of an ACPP that targets tumor expressed proteases without rational design highlights the value of unbiased selection schemes for the development of potential therapeutic agents.

SUBMITTER: Whitney M 

PROVIDER: S-EPMC2903386 | biostudies-literature | 2010 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Parallel in vivo and in vitro selection using phage display identifies protease-dependent tumor-targeting peptides.

Whitney Mike M   Crisp Jessica L JL   Olson Emilia S ES   Aguilera Todd A TA   Gross Larry A LA   Ellies Lesley G LG   Tsien Roger Y RY  

The Journal of biological chemistry 20100511 29


We recently developed activatable cell-penetrating peptides (ACPPs) that target contrast agents to in vivo sites of matrix metalloproteinase activity, such as tumors. Here we use parallel in vivo and in vitro selection with phage display to identify novel tumor-homing ACPPs with no bias for primary sequence or target protease. Specifically, phage displaying a library of ACPPs were either injected into tumor-bearing mice, followed by isolation of cleaved phage from dissected tumor, or isolated ba  ...[more]

Similar Datasets

| S-EPMC3075368 | biostudies-literature
| S-EPMC3827053 | biostudies-other
| S-EPMC2738185 | biostudies-literature
| S-EPMC5689723 | biostudies-literature
| S-EPMC3587414 | biostudies-literature
| S-EPMC2242420 | biostudies-literature
| S-EPMC3474289 | biostudies-literature
| S-EPMC3924706 | biostudies-literature
| S-EPMC9307250 | biostudies-literature
| S-EPMC2921467 | biostudies-literature