Differential roles of transcriptional mediator subunits in regulation of multidrug resistance gene expression in Saccharomyces cerevisiae.
Ontology highlight
ABSTRACT: The multiprotein transcriptional Mediator complex provides a key link between RNA polymerase II and upstream transcriptional activator proteins. Previous work has established that the multidrug resistance transcription factors Pdr1 and Pdr3 interact with the Mediator component Med15/Gal11 to drive normal levels of expression of the ATP-binding cassette transporter-encoding gene PDR5 in Saccharomyces cerevisiae. PDR5 transcription is induced upon loss of the mitochondrial genome (rho(0) cells) and here we provide evidence that this rho(0) induction is Med15 independent. A search through other known Mediator components determined that Med12/Srb8, a member of the CDK8 Mediator submodule, is required for rho(0) activation of PDR5 transcription. The CDK8 submodule contains the cyclin C homologue (CycC/Srb11), cyclin-dependent kinase Cdk8/Srb10, and the large Med13/Srb9 protein. Loss of these other proteins did not lead to the same block in PDR5 induction. Chromatin immunoprecipitation analyses demonstrated that Med15 is associated with the PDR5 promoter in both rho(+) and rho(0), whereas Med12 recruitment to this target promoter is highly responsive to loss of the mitochondrial genome. Coimmunoprecipitation experiments revealed that association of Pdr3 with Med12 can only be detected in rho(0) cells. These experiments uncover the unique importance of Med12 in activated transcription of PDR5 seen in rho(0) cells.
SUBMITTER: Shahi P
PROVIDER: S-EPMC2903675 | biostudies-literature | 2010 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA