Unknown

Dataset Information

0

Drosophila mitoferrin is essential for male fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis.


ABSTRACT:

Background

Mammals and Drosophila melanogaster share some striking similarities in spermatogenesis. Mitochondria in spermatids undergo dramatic morphological changes and syncytial spermatids are stripped from their cytoplasm and then individually wrapped by single membranes in an individualization process. In mammalian and fruit fly testis, components of the mitochondrial iron metabolism are expressed, but so far their function during spermatogenesis is unknown. Here we investigate the role of Drosophila mitoferrin (dmfrn), which is a mitochondrial carrier protein with an established role in the mitochondrial iron metabolism, during spermatogenesis.

Results

We found that P-element insertions into the 5'-untranslated region of the dmfrn gene cause recessive male sterility, which was rescued by a fluorescently tagged transgenic dmfrn genomic construct (dmfrnvenus). Testes of mutant homozygous dmfrnSH115 flies were either small with unorganized content or contained some partially elongated spermatids, or testes were of normal size but lacked mature sperm. Testis squashes indicated that spermatid elongation was defective and electron micrographs showed mitochondrial defects in elongated spermatids and indicated failed individualization. Using a LacZ reporter and the dmfrnvenus transgene, we found that dmfrn expression in testes was highest in spermatids, coinciding with the stages that showed defects in the mutants. Dmfrn-venus protein accumulated in mitochondrial derivatives of spermatids, where it remained until most of it was stripped off during individualization and disposed of in waste bags. Male sterility in flies with the hypomorph alleles dmfrnBG00456 and dmfrnEY01302 over the deletion Df(3R)ED6277 was increased by dietary iron chelation and suppressed by iron supplementation of the food, while male sterility of dmfrnSH115/Df(3R)ED6277 flies was not affected by food iron levels.

Conclusions

In this work, we show that mutations in the Drosophila mitoferrin gene result in male sterility caused by developmental defects. From the sensitivity of the hypomorph mutants to low food iron levels we conclude that mitochondrial iron is essential for spermatogenesis. This is the first time that a link between the mitochondrial iron metabolism and spermatogenesis has been shown. Furthermore, due to the similar expression patterns of some mitochondrial iron metabolism genes in Drosophila and mammals, it is likely that our results are applicable for mammals as well.

SUBMITTER: Metzendorf C 

PROVIDER: S-EPMC2905335 | biostudies-literature | 2010 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Drosophila mitoferrin is essential for male fertility: evidence for a role of mitochondrial iron metabolism during spermatogenesis.

Metzendorf Christoph C   Lind Maria I MI  

BMC developmental biology 20100621


<h4>Background</h4>Mammals and Drosophila melanogaster share some striking similarities in spermatogenesis. Mitochondria in spermatids undergo dramatic morphological changes and syncytial spermatids are stripped from their cytoplasm and then individually wrapped by single membranes in an individualization process. In mammalian and fruit fly testis, components of the mitochondrial iron metabolism are expressed, but so far their function during spermatogenesis is unknown. Here we investigate the r  ...[more]

Similar Datasets

| S-EPMC3065526 | biostudies-literature
| S-EPMC6698654 | biostudies-literature
| S-EPMC6128621 | biostudies-literature
| S-EPMC7826524 | biostudies-literature
| S-EPMC8924220 | biostudies-literature
| S-EPMC11266750 | biostudies-literature
| S-EPMC10726749 | biostudies-literature
| S-EPMC3009665 | biostudies-literature
| S-EPMC11336944 | biostudies-literature
| S-EPMC8248703 | biostudies-literature