Unknown

Dataset Information

0

Fundamental reaction pathways for cytochrome P450-catalyzed 5'-hydroxylation and N-demethylation of nicotine.


ABSTRACT: The reaction pathways for 5'-hydroxylation and N-demethylation of nicotine catalyzed by cytochrome P450 were investigated by performing a series of first-principle electronic structure calculations on a catalytic reaction model system. The computational results indicate that 5'-hydroxylation of nicotine occurs through a two-state stepwise process, that is, an initial hydrogen atom transfer from nicotine to Cpd I (i.e., the HAT step) followed by a recombination of the nicotine moiety with the iron-bound hydroxyl group (i.e., the rebound step) on both the high-spin (HS) quartet and low-spin (LS) doublet states. The HAT step is the rate-determining one. This finding represents the first case that exhibits genuine rebound transition state species on both the HS and the LS states for C(alpha)-H hydroxylation of amines. N-Demethylation of nicotine involves a N-methylhydroxylation to form N-(hydroxymethyl)nornicotine, followed by N-(hydroxymethyl)nornicotine decomposition to nornicotine and formaldehyde. The N-methylhydroxylation step is similar to 5'-hydroxylation, namely, a rate-determining HAT step followed by a rebound step. The decomposition process occurs on the deprotonated state of N-(hydroxymethyl)nornicotine assisted by a water molecule, and the energy barrier is significantly lower than that of the N-methylhydroxylation process. Comparison of the rate-determining free energy barriers for the two reaction pathways predicts a preponderance of 5'-hydroxylation over the N-demethylation by roughly a factor of 18:1, which is in excellent agreement with the factor of 19:1 derived from available experimental data.

SUBMITTER: Li D 

PROVIDER: S-EPMC2909651 | biostudies-literature | 2010 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Fundamental reaction pathways for cytochrome P450-catalyzed 5'-hydroxylation and N-demethylation of nicotine.

Li Dongmei D   Wang Yong Y   Han Keli K   Zhan Chang-Guo CG  

The journal of physical chemistry. B 20100701 27


The reaction pathways for 5'-hydroxylation and N-demethylation of nicotine catalyzed by cytochrome P450 were investigated by performing a series of first-principle electronic structure calculations on a catalytic reaction model system. The computational results indicate that 5'-hydroxylation of nicotine occurs through a two-state stepwise process, that is, an initial hydrogen atom transfer from nicotine to Cpd I (i.e., the HAT step) followed by a recombination of the nicotine moiety with the iro  ...[more]

Similar Datasets

| S-EPMC3096943 | biostudies-literature
| S-EPMC4367892 | biostudies-literature
| S-EPMC6211292 | biostudies-literature
| S-EPMC10285260 | biostudies-literature
| S-EPMC3156719 | biostudies-literature
| S-EPMC3619389 | biostudies-literature
| S-EPMC10100021 | biostudies-literature
| S-EPMC9892303 | biostudies-literature
| S-EPMC7930613 | biostudies-literature
| S-EPMC7207044 | biostudies-literature