Unknown

Dataset Information

0

An Information Matrix Prior for Bayesian Analysis in Generalized Linear Models with High Dimensional Data.


ABSTRACT: An important challenge in analyzing high dimensional data in regression settings is that of facing a situation in which the number of covariates p in the model greatly exceeds the sample size n (sometimes termed the "p > n" problem). In this article, we develop a novel specification for a general class of prior distributions, called Information Matrix (IM) priors, for high-dimensional generalized linear models. The priors are first developed for settings in which p < n, and then extended to the p > n case by defining a ridge parameter in the prior construction, leading to the Information Matrix Ridge (IMR) prior. The IM and IMR priors are based on a broad generalization of Zellner's g-prior for Gaussian linear models. Various theoretical properties of the prior and implied posterior are derived including existence of the prior and posterior moment generating functions, tail behavior, as well as connections to Gaussian priors and Jeffreys' prior. Several simulation studies and an application to a nucleosomal positioning data set demonstrate its advantages over Gaussian, as well as g-priors, in high dimensional settings.

SUBMITTER: Gupta M 

PROVIDER: S-EPMC2909687 | biostudies-literature | 2009

REPOSITORIES: biostudies-literature

altmetric image

Publications

An Information Matrix Prior for Bayesian Analysis in Generalized Linear Models with High Dimensional Data.

Gupta Mayetri M   Ibrahim Joseph G JG  

Statistica Sinica 20090101 4


An important challenge in analyzing high dimensional data in regression settings is that of facing a situation in which the number of covariates p in the model greatly exceeds the sample size n (sometimes termed the "p > n" problem). In this article, we develop a novel specification for a general class of prior distributions, called Information Matrix (IM) priors, for high-dimensional generalized linear models. The priors are first developed for settings in which p < n, and then extended to the  ...[more]

Similar Datasets

| S-EPMC6750760 | biostudies-literature
| S-EPMC4874534 | biostudies-literature
| S-EPMC9933885 | biostudies-literature
| S-EPMC2883299 | biostudies-literature
| S-EPMC7425805 | biostudies-literature
| S-EPMC6431156 | biostudies-literature
| S-EPMC10292730 | biostudies-literature
| S-EPMC9427730 | biostudies-literature
| S-EPMC9907224 | biostudies-literature
| S-EPMC7275732 | biostudies-literature