Ontology highlight
ABSTRACT: Aims/hypothesis
The mechanism of fluid-related complications caused by thiazolidinedione derivatives is unclear. One potential mechanism is thiazolidinedione-induced arterial vasodilatation, which results in vascular leakage and a fall in blood pressure, normally counterbalanced by sympathetic activation and subsequent renal fluid retention. We hypothesised that thiazolidinedione-induced vascular leakage will be particularly prominent in patients with autonomic neuropathy.Methods
We conducted a randomised, double-blind, placebo-controlled, parallel study in 40 patients with type 2 diabetes on insulin treatment recruited from a university medical centre. The randomisation was performed by a central office using a randomisation schedule. Both treatment groups, placebo (n = 21) and rosiglitazone (n = 19), were stratified for sex and level of autonomic neuropathy as assessed by Ewing score (<2.5 or >or=2.5). We investigated the effects of 16 weeks of treatment with rosiglitazone 4 mg twice daily on vascular leakage (transcapillary escape rate of albumin, TERalb), body weight, extracellular volume and plasma volume.Results
Thirty-nine patients were included in the analysis. In patients with high Ewing scores (n = 16), rosiglitazone increased TERalb significantly (DeltaTERalb: rosiglitazone +2.43 +/- 0.45%/h, placebo -0.11 +/- 0.15%/h, p = 0.002), while rosiglitazone had no effect in the patients with low Ewing scores (n = 23). Rosiglitazone-induced increases in TERalb and Ewing score at baseline were correlated (r = 0.65, p = 0.02). There was no correlation between Ewing score and rosiglitazone-induced changes in fluid variables. One subject was withdrawn from the study because of atrial fibrillation.Conclusions/interpretation
Rosiglitazone may increase vascular leakage in insulin-treated patients with type 2 diabetes with autonomic neuropathy. Autonomic neuropathy did not exaggerate rosiglitazone-induced fluid retention. Therefore, autonomic neuropathy should be considered as a risk factor for thiazolidinedione-induced oedema, not for thiazolidinedione-induced fluid retention.Trial registration
ClinicalTrials.gov NCT00422955.Funding
GlaxoSmithKline.
SUBMITTER: Rennings AJ
PROVIDER: S-EPMC2910895 | biostudies-literature | 2010 Sep
REPOSITORIES: biostudies-literature
Diabetologia 20100525 9
<h4>Aims/hypothesis</h4>The mechanism of fluid-related complications caused by thiazolidinedione derivatives is unclear. One potential mechanism is thiazolidinedione-induced arterial vasodilatation, which results in vascular leakage and a fall in blood pressure, normally counterbalanced by sympathetic activation and subsequent renal fluid retention. We hypothesised that thiazolidinedione-induced vascular leakage will be particularly prominent in patients with autonomic neuropathy.<h4>Methods</h4 ...[more]