ABSTRACT: A novel cyanide analyzer based on sensitive cobinamide chemistry relies on simultaneous reagent and sample injection and detection in a 50 cm liquid core waveguide (LCW) flow cell illuminated by a white light emitting diode. The transmitted light is read by a fiber-optic charge coupled device (CCD) spectrometer. Alkaline cobinamide (orange, lambda(max) = 510 nm) changes to violet (lambda(max) = 583 nm) upon reaction with cyanide. Multiwavelength detection permits built-in correction for artifact responses intrinsic to a single-line flow injection system and corrects for drift. With optimum choice of the reaction medium, flow rate, and mixing coil length, the limit of detection (LOD, S/N = 3) is 30 nM and the linear dynamic range extends to 10 microM. The response base width for 1% carryover is <95 s, permitting a throughput of 38 samples/h. The relative standard deviations (rsd) for repetitive determinations at 0.15, 0.5, and 1 microM were 7.6% (n = 5), 3.2% (n = 7), and 1.7% (n = 6), respectively. Common ions at 250-80,000x concentrations do not interfere except for sulfide. For the determination of 2 microM CN(-), the presence of 2, 5, 10, 20, 100, and 1000 microM HS(-) results in 22, 27, 48, 58, 88, and 154% overestimation of cyanide. The sulfide product actually has a different characteristic absorption, and in those samples where significant presence is likely, this can be corrected for. We demonstrate applicability by analyzing the hydrolytic cyanide extract of apple and pear seeds with orange seeds as control and also measure HCN in breath air samples. Spike recoveries in these sample extracts ranged from 91 to 108%.