Unknown

Dataset Information

0

Genetic variations of the PI3K-AKT-mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients.


ABSTRACT: The phosphoinositide-3 kinase (PI3K)-AKT- mammalian target of rapamycin (mTOR) pathway is an important cellular pathway controlling cell growth, tumorigenesis, cell invasion and drug response. We hypothesized that genetic variations in the PI3K-AKT-mTOR pathway may affect the survival in muscle invasive and metastatic bladder cancer (MiM-BC) patients. We conducted a follow-up study of 319 MiM-BC patients to systematically evaluate 289 single-nucleotide polymorphisms (SNPs) of 20 genes in the PI3K-AKT-mTOR pathway as predicators of survival. In multivariate Cox regression, AKT2 rs3730050, PIK3R1 rs10515074 and RAPTOR rs9906827 were significantly associated with survival. In combined analysis, we found a cumulative effect of these three SNPs on survival. With the increasing number of unfavorable genotypes, there was a significant trend of higher risk of death in multivariate Cox regression (P for trend <0.001) and shorter median survival time in Kaplan-Meier estimates (P log rank <0.001). This is the first study to evaluate the role of germ line genetic variations in the PI3K-AKT-mTOR pathway genes as predictors of MiM-BC clinical outcomes. These findings warrant further replication in independent populations and may provide information on disease management and development of target therapies.

SUBMITTER: Chen M 

PROVIDER: S-EPMC2915631 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Genetic variations of the PI3K-AKT-mTOR pathway and clinical outcome in muscle invasive and metastatic bladder cancer patients.

Chen Meng M   Gu Jian J   Delclos George L GL   Killary Ann M AM   Fan Zhen Z   Hildebrandt Michelle A T MA   Chamberlain Robert M RM   Grossman H Barton HB   Dinney Colin P CP   Wu Xifeng X  

Carcinogenesis 20100607 8


The phosphoinositide-3 kinase (PI3K)-AKT- mammalian target of rapamycin (mTOR) pathway is an important cellular pathway controlling cell growth, tumorigenesis, cell invasion and drug response. We hypothesized that genetic variations in the PI3K-AKT-mTOR pathway may affect the survival in muscle invasive and metastatic bladder cancer (MiM-BC) patients. We conducted a follow-up study of 319 MiM-BC patients to systematically evaluate 289 single-nucleotide polymorphisms (SNPs) of 20 genes in the PI3  ...[more]

Similar Datasets

| S-EPMC2792319 | biostudies-literature
| S-EPMC2867666 | biostudies-literature
| S-EPMC6492984 | biostudies-literature
| S-EPMC5529984 | biostudies-other
| S-EPMC3248125 | biostudies-literature
| S-EPMC4277331 | biostudies-literature
| S-EPMC9739707 | biostudies-literature
| S-EPMC8615614 | biostudies-literature
| S-EPMC8304822 | biostudies-literature
| S-EPMC7643645 | biostudies-literature