Unknown

Dataset Information

0

Uptake, distribution and diffusivity of reactive fluorophores in cells: implications toward target identification.


ABSTRACT: There is much recent interest in the application of copper-free click chemistry to study a wide range of biological events in vivo and in vitro. Specifically, azide-conjugated fluorescent probes can be used to identify targets which have been modified with bioorthogonal reactive groups. For intracellular applications of this chemistry, the structural and physicochemical properties of the fluorescent azide become increasingly important. Ideal fluorophores should extensively accumulate within cells, have even intracellular distribution, and be free (unbound), allowing them to efficiently participate in bimolecular reactions. We report here on the synthesis and evaluation of a set of structurally diverse fluorescent probes to examine their potential usefulness in intracellular click reactions. Total cellular uptake and intracellular distribution profiles were comparatively assessed using both quantitative and qualitative approaches. The intracellular diffusion coefficients were measured using a fluorescence recovery after photobleaching (FRAP)-based method. Many reactive fluorophores exhibited suboptimal properties for intracellular reactions. BODIPY- and TAMRA-based azides had superior cellular accumulation, whereas TAMRA-based probes had the most uniform intracellular distribution and best cytosolic diffusivity. Collectively, these results provide an unbiased comparative evaluation regarding the suitability of azide-linked fluorophores for intracellular click reactions.

SUBMITTER: Cunningham CW 

PROVIDER: S-EPMC2916926 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Uptake, distribution and diffusivity of reactive fluorophores in cells: implications toward target identification.

Cunningham Christopher W CW   Mukhopadhyay Archana A   Lushington Gerald H GH   Blagg Brian S J BS   Prisinzano Thomas E TE   Krise Jeffrey P JP  

Molecular pharmaceutics 20100801 4


There is much recent interest in the application of copper-free click chemistry to study a wide range of biological events in vivo and in vitro. Specifically, azide-conjugated fluorescent probes can be used to identify targets which have been modified with bioorthogonal reactive groups. For intracellular applications of this chemistry, the structural and physicochemical properties of the fluorescent azide become increasingly important. Ideal fluorophores should extensively accumulate within cell  ...[more]

Similar Datasets

| S-EPMC6686729 | biostudies-literature
| S-EPMC5707477 | biostudies-literature
| S-EPMC4348249 | biostudies-literature
| S-EPMC4539238 | biostudies-literature
| S-EPMC2888797 | biostudies-literature
2024-04-03 | PXD049153 | Pride
| S-EPMC8244112 | biostudies-literature
| S-EPMC3959289 | biostudies-literature
| S-EPMC4865324 | biostudies-literature
| S-EPMC4003469 | biostudies-literature