Unknown

Dataset Information

0

Filtration of submicrometer particles by pelagic tunicates.


ABSTRACT: Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger than the mesh spacing, a low-Re mathematical model of encounter rates by the salp feeding apparatus for realistic oceanic particle-size distributions shows that submicron particles, due to their higher abundances, are encountered at higher rates (particles per time) than larger particles. Data from feeding experiments with 0.5-, 1-, and 3-microm diameter polystyrene spheres corroborate these findings. Although particles larger than 1 microm (e.g., flagellates, small diatoms) represent a larger carbon pool, smaller particles in the 0.1- to 1-microm range (e.g., bacteria, Prochlorococcus) may be more quickly digestible because they present more surface area, and we find that particles smaller than the mesh size (1.4 microm) can fully satisfy salp energetic needs. Furthermore, by packaging submicrometer particles into rapidly sinking fecal pellets, pelagic tunicates can substantially change particle-size spectra and increase downward fluxes in the ocean.

SUBMITTER: Sutherland KR 

PROVIDER: S-EPMC2930554 | biostudies-literature | 2010 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Filtration of submicrometer particles by pelagic tunicates.

Sutherland Kelly R KR   Madin Laurence P LP   Stocker Roman R  

Proceedings of the National Academy of Sciences of the United States of America 20100809 34


Salps are common in oceanic waters and have higher per-individual filtration rates than any other zooplankton filter feeder. Although salps are centimeters in length, feeding via particle capture occurs on a fine, mucous mesh (fiber diameter d approximately 0.1 microm) at low velocity (U = 1.6 +/- 0.6 cmxs(-1), mean +/- SD) and is thus a low Reynolds-number (Re approximately 10(-3)) process. In contrast to the current view that particle encounter is dictated by simple sieving of particles larger  ...[more]

Similar Datasets

| S-EPMC6894864 | biostudies-literature
| S-EPMC9501160 | biostudies-literature
| S-EPMC5554886 | biostudies-other
| S-EPMC5316477 | biostudies-literature
| S-EPMC6155078 | biostudies-literature
| S-EPMC8511993 | biostudies-literature
| PRJNA473552 | ENA
| S-EPMC4122922 | biostudies-literature
| S-EPMC7895332 | biostudies-literature
| S-EPMC9388537 | biostudies-literature