Project description:Glucose levels 2 h after an oral glucose challenge are a clinical measure of glucose tolerance used in the diagnosis of type 2 diabetes. We report a meta-analysis of nine genome-wide association studies (n = 15,234 nondiabetic individuals) and a follow-up of 29 independent loci (n = 6,958-30,620). We identify variants at the GIPR locus associated with 2-h glucose level (rs10423928, beta (s.e.m.) = 0.09 (0.01) mmol/l per A allele, P = 2.0 x 10(-15)). The GIPR A-allele carriers also showed decreased insulin secretion (n = 22,492; insulinogenic index, P = 1.0 x 10(-17); ratio of insulin to glucose area under the curve, P = 1.3 x 10(-16)) and diminished incretin effect (n = 804; P = 4.3 x 10(-4)). We also identified variants at ADCY5 (rs2877716, P = 4.2 x 10(-16)), VPS13C (rs17271305, P = 4.1 x 10(-8)), GCKR (rs1260326, P = 7.1 x 10(-11)) and TCF7L2 (rs7903146, P = 4.2 x 10(-10)) associated with 2-h glucose. Of the three newly implicated loci (GIPR, ADCY5 and VPS13C), only ADCY5 was found to be associated with type 2 diabetes in collaborating studies (n = 35,869 cases, 89,798 controls, OR = 1.12, 95% CI 1.09-1.15, P = 4.8 x 10(-18)).
Project description:Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
Project description:Germline variation contributes to individual risk for developing specific types of cancer. Analyzing thousands of tumors, we found evidence that the germline also influences vulnerable tissue sites and the mutations that arise in tumor genomes. These associations provide new clues to unravel the biologic mechanisms underlying cancer predisposition.
Project description:Rhinovirus (RV) is the most prevalent human respiratory virus and is responsible for at least half of all common colds. RV infections may result in a broad spectrum of effects that range from asymptomatic infections to severe lower respiratory illnesses. The basis for inter-individual variation in the response to RV infection is not well understood. In this study, we explored whether host genetic variation is associated with variation in gene expression response to RV infections between individuals. To do so, we obtained genome-wide genotype and gene expression data in uninfected and RV-infected peripheral blood mononuclear cells (PBMCs) from 98 individuals. We mapped local and distant genetic variation that is associated with inter-individual differences in gene expression levels (eQTLs) in both uninfected and RV-infected cells. We focused specifically on response eQTLs (reQTLs), namely, genetic associations with inter-individual variation in gene expression response to RV infection. We identified local reQTLs for 38 genes, including genes with known functions in viral response (UBA7, OAS1, IRF5) and genes that have been associated with immune and RV-related diseases (e.g., ITGA2, MSR1, GSTM3). The putative regulatory regions of genes with reQTLs were enriched for binding sites of virus-activated STAT2, highlighting the role of condition-specific transcription factors in genotype-by-environment interactions. Overall, we suggest that the 38 loci associated with inter-individual variation in gene expression response to RV-infection represent promising candidates for affecting immune and RV-related respiratory diseases.
Project description:Because of its comparatively recent evolution, Homo sapiens exhibit relatively little within-species genomic diversity. However, because of genome size, a proportionately small amount of variation creates ample opportunities for both rare mutations that may cause disease as well as more common genetic variations that may be important in disease modification or pharmacogenetics. Primarily because of the East African origin of modern humans, individuals of African ancestry (AA) exhibit greater degrees of genetic diversity than more recently established populations, such as those of European ancestry (EA) or Asian ancestry. Those population effects extend to differences in frequency of common gene variants that may be important in heart failure natural history or therapy. For cell-signaling mechanisms important in heart failure, we review and present new data for genetic variation between AA and EA populations. Data indicate that: 1) neurohormonal signaling mechanisms frequently (16 of the 19 investigated polymorphisms) exhibit racial differences in the allele frequencies of variants comprising key constituents; 2) some of these differences in allele frequency may differentially affect the natural history of heart failure in AA compared with EA individuals; and 3) in many cases, these differences likely play a role in observed racial differences in drug or device response.
Project description:We tested the hypothesis that the cumulative effects of common genetic variants related to elevated fasting glucose are collectively associated with oxidative stress. Using 25 single nucleotide polymorphisms (SNPs), a weighted genetic risk score (wGRS) was constructed by summing nine risk alleles based on nominal significance and a consistent effect direction in 1,395 controls and 718 patients with impaired fasting glucose (IFG) or newly diagnosed type 2 diabetes. All the participants were divided into the following three groups: low-wGRS, middle-wGRS, and high-wGRS groups. Among the nine SNPs, five SNPs were significantly associated with IFG and type 2 diabetes in this Korean population. wGRS was significantly associated with increased IFG and newly diagnosed type 2 diabetes (p?=?6.83?×?10-14, odds ratio?=?1.839) after adjusting for confounding factors. Among the IFG and type 2 diabetes patients, the fasting serum glucose and HbA1c levels were significantly higher in the high-wGRS group than in the other groups. The urinary 8-epi-PGF2? and malondialdehyde concentrations were significantly higher in the high-wGRS group than in the other groups. Moreover, general population-level instrumental variable estimation (using wGRS as an instrument) strengthened the causal effect regarding the largely adverse influence of high levels of fasting serum glucose on markers of oxidative stress in the Korean population. Thus, the combination of common genetic variants with small effects on IFG and newly diagnosed type 2 diabetes are significantly associated with oxidative stress.
Project description:To identify susceptibility loci for meningioma, we conducted a genome-wide association study of 859 affected individuals (cases) and 704 controls with validation in two independent sample sets totaling 774 cases and 1,764 controls. We identified a new susceptibility locus for meningioma at 10p12.31 (MLLT10, rs11012732, odds ratio = 1.46, P(combined) = 1.88 × 10(-14)). This finding advances our understanding of the genetic basis of meningioma development.
Project description:A low level of HDL-C is the most common plasma lipid abnormality observed in men with established coronary heart disease (CHD). To identify allelic variants associated with susceptibility to low HDL-C and CHD, we examined 60 candidate genes with key roles in HDL metabolism, insulin resistance, and inflammation using samples from the Veterans Affairs HDL Intervention Trial (VA-HIT; cases, n = 699) and the Framingham Offspring Study (FOS; controls, n = 705). VA-HIT was designed to examine the benefits of HDL-raising with gemfibrozil in men with low HDL-C (?40 mg/dl) and established CHD. After adjustment for multiple testing within each gene, single-nucleotide polymorphisms (SNP) significantly associated with case status were identified in the genes encoding LIPC (rs4775065, P < 0.0001); CETP (rs5882, P = 0.0002); RXRA (rs11185660, P = 0.0021); ABCA1 (rs2249891, P = 0.0126); ABCC6 (rs150468, P = 0.0206; rs212077, P = 0.0443); CUBN (rs7893395, P = 0.0246); APOA2 (rs3813627, P = 0.0324); SELP (rs732314, P = 0.0376); and APOC4 (rs10413089, P = 0.0425). Included among the novel findings of this study are the identification of susceptibility alleles for low HDL-C/CHD risk in the genes encoding CUBN and RXRA, and the observation that genetic variation in SELP may influence CHD risk through its effects on HDL.
Project description:BackgroundThe human oral microbiome is formed early in development. Its composition is influenced by environmental factors including diet, substance use, oral health, and overall health and disease. The influence of human genes on the composition and stability of the oral microbiome is still poorly understood. We studied both environmental and genetic characteristics on the oral microbiome in a large twin sample as well as in a large cohort of unrelated individuals. We identify several significantly heritable features of the oral microbiome. The heritability persists in twins even when their cohabitation changes. The heritability of these traits correlates with the cumulative genetic contributions of over half a million single nucleotide sequence variants measured in a different population of unrelated individuals. Comparison of same-sex and opposite sex cotwins showed no significant differences. We show that two new loci on chromosomes 7 and 12 are associated with the most heritable traits.ResultsAn analysis of 752 twin pairs from the Colorado Twin Registry, shows that the beta-diversity of monozygotic twins is significantly lower than for dizygotic or unrelated individuals. This is independent of cohabitation status. Intraclass correlation coefficients of nearly all taxa examined were higher for MZ than DZ twin pairs. A comparison of individuals sampled over 2-7 years confirmed previous reports that the oral microbiome remains relatively more stable in individuals over that time than to unrelated people. Twin modeling shows that a number of microbiome phenotypes were more than 50% heritable consistent with the hypothesis that human genes influence microbial populations. To identify loci that could influence microbiome phenotypes, we carried out an unbiased GWAS analysis which identified one locus on chromosome 7 near the gene IMMPL2 that reached genome-wide significance after correcting for multiple testing. Another locus on chromosome 12 near the non-coding RNA gene INHBA-AS1 achieved genome-wide significance when analyzed using KGG4 that sums SNP significance across coding genes.DiscussionUsing multiple methods, we have demonstrated that some aspects of the human oral microbiome are heritable and that with a relatively small sample we were able to identify two previously unidentified loci that may be involved.