Unknown

Dataset Information

0

Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials.


ABSTRACT: Mass spectrometry (MS)-based phosphoproteomics remains challenging due to the low abundance of phosphoproteins and substoichiometric phosphorylation. This demands better methods to effectively enrich phosphoproteins/peptides prior to MS analysis. We have previously communicated the first use of mesoporous zirconium dioxide (ZrO(2)) nanomaterials for effective phosphopeptide enrichment. Here, we present the full report including the synthesis, characterization, and application of mesoporous titanium dioxide (TiO(2)), ZrO(2), and hafnium dioxide (HfO(2)) in phosphopeptide enrichment and MS analysis. Mesoporous ZrO(2) and HfO(2) are demonstrated to be superior to TiO(2) for phosphopeptide enrichment from a complex mixture with high specificity (>99%), which could almost be considered as a "purification", mainly because of the extremely large active surface area of mesoporous nanomaterials. A single enrichment and Fourier transform MS analysis of phosphopeptides digested from a complex mixture containing 7% of alpha-casein identified 21 out of 22 phosphorylation sites for alpha-casein. Moreover, the mesoporous ZrO(2) and HfO(2) can be reused after a simple solution regeneration procedure with comparable enrichment performance to that of fresh materials. Mesoporous ZrO(2) and HfO(2) nanomaterials hold great promise for applications in MS-based phosphoproteomics.

SUBMITTER: Nelson CA 

PROVIDER: S-EPMC2936271 | biostudies-literature | 2010 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effective enrichment and mass spectrometry analysis of phosphopeptides using mesoporous metal oxide nanomaterials.

Nelson Cory A CA   Szczech Jeannine R JR   Dooley Chad J CJ   Xu Qingge Q   Lawrence Matthew J MJ   Zhu Haoyue H   Jin Song S   Ge Ying Y  

Analytical chemistry 20100901 17


Mass spectrometry (MS)-based phosphoproteomics remains challenging due to the low abundance of phosphoproteins and substoichiometric phosphorylation. This demands better methods to effectively enrich phosphoproteins/peptides prior to MS analysis. We have previously communicated the first use of mesoporous zirconium dioxide (ZrO(2)) nanomaterials for effective phosphopeptide enrichment. Here, we present the full report including the synthesis, characterization, and application of mesoporous titan  ...[more]

Similar Datasets

| S-EPMC2519875 | biostudies-literature
| S-EPMC6826256 | biostudies-literature
| S-EPMC5091076 | biostudies-literature
| S-EPMC2547851 | biostudies-literature
| S-EPMC1794346 | biostudies-literature
| S-EPMC2982680 | biostudies-literature
| S-EPMC9264387 | biostudies-literature